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Abstract

The present are the notes for the author’s talk given in the Conference on Diophantine

Problems and Arithmetic Dynamics held at Academia Sinica, Taipei, June 24–28, 2013.

The purposes are two-folds. The first is to introduce some background on the problem of

density of the ordinary locus of the modulo p of certain Shimura varieties. The second

aim is to show new results about the ordinary locus in reduction modulo p of the Hilbert-

Siegel moduli spaces. This is a survey article of the current status of the aforementioned

problem.

1. Introduction (the statement of the main result)

Throughout this section let p denote a prime number. Let F be a totally

real number field of degree d and let OF denote the ring of integers. A

polarized abelian OF -variety is a triple (A,λ, ι), where

• A is an abelian variety,

• ι : OF → End(A) is a ring monomorphism, and

• λ : A→ At is a polarization such that

λ ◦ ι(a) = ι(a)t ◦ λ, ∀ a ∈ OF . (1.1)

A pair (A, ι) as above is called an abelian OF -variety. A polarization λ on

an abelian OF -variety (A, ι) that satisfies the condition (1.1) is said to be an

OF -linear polarization. Clearly, one has the notion of families of polarized
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abelian OF -varieties and we can formulate the moduli problem for these

objects.

Notice that any abelian OF -variety always has dimension divisible by

[F : Q]. Let m ∈ Z+ be a positive integer and put g = md. Let M be the

moduli scheme over SpecZ(p) of g-dimensional prime-to-p degree polarized

abelian OF -varieties (A,λ, ι) together with a prime-to-p level structure and

satisfying the Kottwitz determinant condition. M is called the Hilbert-Siegel

moduli scheme of degree m associated to the totally real field F .

We have explained the objects polarized abelian OF -varieties. Let us

describe explicitly the prime-to-p level structure and determinant condition.

This formulation is a special case of more general PEL-type Shimura vari-

eties.

Let (V, ψ) be a vector space over F of dimension 2m, together with a non-

degenerate alternating pairing ψ : V ×V → Q such that ψ(ax, y) = ψ(x, ay)

for all a ∈ F and x, y ∈ V . The pair (V, ψ) is uniquely determined by m up

to isomorphism. Choose an OF -lattice L0 in V so that ψ(L0, L0) ⊂ Z and

its tensor L0⊗ZZp over Zp is self-dual with respect to the pairing ψ. Denote

by Ẑ = limZ/nZ =
∏

ℓ Zℓ the profinite completion of Z and Ẑ(p) =
∏

ℓ 6=p Zℓ

its prime-to-p component. Let N ≥ 3 be a prime-to-p integer. Put

U := ker(G(Ẑ) → G(Z/NZ)),

where G is the reductive group over Q defined by

G(Q) = {x ∈ GLF (V ) |x′x ∈ Q× }, (1.2)

where x 7→ x′ is the adjoint with respect to the pairing ψ. Write U = UpU
p,

where Up = G(Zp) and Up ⊂ G(A(p)) is an open compact subgroup. Here

A(p) = Ẑ(p) ⊗Q denotes the prime-to-p adele ring of Q.

For the prime-to-p level structure we refer to in the definition of M is

an Up-orbit η̄ of OF ⊗ Ẑ(p)-linear isomorphisms

η : L0 ⊗Z Ẑ(p) ≃ T (p)(A) :=
∏

ℓ 6=p

Tℓ(A) (1.3)

that preserve the pairings up to a scalar. There are two reasons of adding

prime-to-p level structures. The first one is to rigidify the objects so that

there is no non-trivial automorphisms of the objects and hence that the
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moduli functor becomes representable. The other one is to restrict the scope

of the objects so that their prime-to-p Tate modules lie in the same “genus”

of a given prime-to-p lattice L0 ⊗ Ẑ(p). In particular, we have fixed a prime-

to-p polarization type of objects and the moduli scheme M is of finite type.

We come to explain the Kottwitz determinant condition. This is a closed

condition, which is necessary for the defined integral model M to be flat (but

not sufficient for some PEL-type moduli spaces; see Pappas [25]). Choose a

homomorphism of R-groups h : C× → GR so that ψ(h(z)x, y) = ψ(x, h(z̄)y)

for all z ∈ C and x, y ∈ VR := V ⊗Q R and that the pairing (x, y) :=

ψ(x, h(i)y) is positive (or negative, but fixed for all) definite. The element

h(i) gives rise to a complex structure on VR which commutes with the OF -

action. Let VC = V −1,0 ⊕V 0,−1 be the decomposition of eigenspaces so that

h(z) acts by z on V −1,0. The determinant condition then is an equality of

the following two characteristic functions:

char(a|Lie(A/S)) = char(a|V −1,0) in OS [X ] (1.4)

for all a ∈ OF , where S is the base scheme of the object (A,λ, ι).

We now state our main result. Let M := M ⊗ Fp be the reduction

modulo p of the Hilbert-Siegel moduli scheme M. Let Mord ⊂ M be the

ordinary locus of M, which parameterizes the objects (A,λ, ι, η̄) in M whose

underlying abelian variety A is ordinary. Recall that an abelian variety A

over a field k of characteristic p > 0 is said to be ordinary if

A[p](k̄) ≃ (Z/pZ)dimA, (1.5)

where k̄ is an algebraic closure of k.

Theorem 1.1. The ordinary locus Mord is open and dense in M.

Remark 1.2. In the case where the prime p does not divide the discriminant

∆F/Q of F over Q, that is, p is unramified in F , the moduli spaceM is smooth

over SpecZ(p), and Theorem 1.1 is known due to T. Wedhorn. The only new

part of this theorem deals with the case where p divides the discriminant

∆F/Q, the case where the moduli space has singularities. In the special case

where m = 1, that is, M is a Hilbert moduli scheme, Theorem 1.1 is proved

in [35].

In Section 4 we explain the strategy of the proof of Theorem 1.1. There
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are two main ingredients and we choose to explain the first part on the KR

stratification. Some detailed proofs are given in Section 6.

2. Background

In this section we give an overview of some background of density of the

ordinary locus in certain moduli spaces modulo p.

2.1. Siegel modular varieties

Let g ≥ 1 be a positive integer and δ be a positive integer not necessarily

divisible by p. Let Ag,δ denote the moduli space over Fp of g-dimensional

polarized abelian varieties (A,λ) with degλ = δ2, and let Aord
g,δ ⊂ Ag,δ denote

the ordinary locus. We have the following fundamental result.

Theorem 2.1 (Grothendieck-Messing, Mumford, Norman-Oort). The ordi-

nary locus Aord
g,δ is open and dense in Ag,δ.

Grothendieck and Messing [6, 16] established the deformation theory for

abelian varieties and polarized abelian varieties. Mumford and Norman (see

[17, 20]) established the tools for constructions of deformations of polarized

abelian varieties through displays and the Cartier-Dieudonné theory. In [17]

Mumford outlined a program for lifting polarized abelian varieties to char-

acteristic zero by showing the density of the ordinary locus and using the

canonical lifting of ordinary abelian varieties (see Katz [12]). Finally Norman

and Oort showed the complete result in [22] by introducing more involved

techniques. As is already pointed out, a main application of Theorem 2.1 is

that any polarized abelian varieties in positive characteristic can be lifted to

a polarized abelian variety in characteristic zero. Norman [21] gave another

proof this lifting result; Norman’s method was extended to lift abelian vari-

eties with additional structures by the author [34]. Another application of

Theorem 2.1 computes the dimension of the moduli space Ag,δ:

dimAg,δ =
g(g + 1)

2
. (2.1)

Generalizing the results of Theorem 2.1 J. Achter showed the density

of the ordinary locus in Hilbert-Siegel moduli spaces under the assumption
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that p is unramified in F and the polarizations have mild degree in p. See

[1] for detailed statements of Achter’s results.

2.2. Stamm’s example

Let F be a real quadratic field and assume that p is inert in F . Consider

the Hilbert modular surface M over Fp associated to the real quadratic field

F (i.e. m = 1 and d = 2 in our case); this is a smooth quasi-projective

surface. Let MI → M be the Hilbert modular surface with Iwahori level

structure at p. This moduli space is associated to the open compact subgroup

U = UpU
p with

Up =
{( ∗ ∗

p∗ ∗

)}
⊂ GL2(Op), Op := OF ⊗Z Zp.

Stamm [31] showed that the ordinary locus Mord
I is not dense in MI . Notice

that the ordinary locus Mord
I is nonempty as Mord is open and dense in M.

Stamm’s example shows that in general the density of the ordinary locus

may fail in the bad reduction cases.

In fact the moduli space MI is equi-dimensional of dimension 2. There

are 4 types of components; among them two are ordinary (whose generic

points are all ordinary) and the other two are supersingular (namely they

are entirely contained in the supersingular locus of MI). Moreover, the

moduli space MI has

2 + 2#G(Z/NZ)
ζF (−1)

4

irreducible components, where ζF (s) is the Dedekind zeta function of the

totally real field F ; see [37, 39]. The appearance of these 4 types of com-

ponents may be best explained by the Kottwitz-Rapoport stratification; see

Kottwitz-Rapoport [15] and Ngô-Genestier [18] also cf. the expository article

[42].

2.3. Siegel modular varieties with Iwahori level structure

Let AI be Siegel modular varieties over Fp with Iwahori level structure

at p. The moduli space AI parametrizes isomorphism classes of the following
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objects

(A0
α
→ A1

α
→ · · ·

α
→ Ag, λ0, λg),

where

• each Ai is a g-dimensional abelian variety,

• each α is an isogeny of degree p,

• λ0 and λg are principal polarizations on A0 and Ag, respectively, such

that (αg)∗λg = pλ0.

Ngô and Genestier [18] showed that the moduli space AI is equi-dimen-

sional of dimension g(g+1)/2 and that the ordinary locus Aord
I is open and

dense in AI . The first statement follows from the second statement.

As an application of density of the ordinary locus, the author [36] showed

that the moduli spaceAI has 2
g irreducible components. This was previously

a conjecture of de Jong [4] where the case g = 2 was proven. The idea of

the proof is to apply the p-adic monodromy theorem of Faltings and Chai

[5] on the ordinary locus and show that each type of maximal KR stratum

is irreducible. For further studies of the KR stratification on the moduli

space AI ; see Görtz and the author [8, 9]. The p-adic monodromy theorem

of Faltings and Chai is generalized to any p-rank stratum; see [40].

2.4. A PEL-type good reduction case

We consider good reductions of the Picard modular surface associated

to the unitary group G = GU(2, 1). Let K be an imaginary quadratic field

with ring of integers OK . Assume that p is unramified in K. Let MOK

(2,1)

denote the moduli space over Fp of principally polarized abelian three folds

(A,λ, ι) with an action by OK with signature (2, 1) on the Lie algebra Lie(A).

The occurrence of Newton polygons in the Picard modular surface MOK

(2,1)

depends on the behavior of p in K.

(a) If p is inert in K, then all possible slope sequences are
(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
,

(
0, 0,

1

2
,
1

2
, 1, 1

)
.

(b) If p splits in K, then all possible slope sequences are
(
1

3
,
1

3
,
1

3
,
2

3
,
2

3
,
2

3

)
,

(
0,

1

2
,
1

2
,
1

2
,
1

2
, 1

)
, (0, 0, 0, 1, 1, 1) .
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Let us verify this. For example in case (a) one has embeddings of semi-

simple Qp-algebras K⊗Qp →֒ Mat3(D1/2) andK⊗Qp →֒ Mat2(Qp)×D1/2×

Mat2(Qp), where D1/2 is the unique quaternion division algebra over Qp.

Case (b) is a Lubin-Tate case; one can easily determine the slope sequences

of one-dimensional p-divisible groups of height 3. One sees that in case (a)

the ordinary sequence does not appear, namely, the ordinary locus of MOK

(2,1)

is empty in the inert case. In case (b) the ordinary sequence does appear;

however, there is no supersingular slope sequence. That is, the supersingular

locus of MOK

(2,1) is empty in the split case.

The smallest Newton stratum corresponding to (1/3, 1/3, 1/3, 2/3, 2/3,

2/3) in case (b) is called the basic Newton stratum in (a good reduction of)

a general PEL-type moduli space .

In any case one expects that the lowest (largest) Newton stratum (strata)

should be open and dense in good reduction of PEL-type moduli space. This

problem was settled by T. Wedhorn [32] where he introduced the notion of

µ-ordinary locus in terms of group theory. We will describe his results on

density of µ-ordinary locus in the next section.

3. Density of µ-Ordinary Locus (following Wedhorn [32])

In this section we explain µ-ordinary points in a good reduction of a

PEL-type moduli space. Our reference is Wedhorn [32]. As in Introduction,

to define a moduli space of abelian with additional structures we need to

specify a datum – called the PEL datum. Here the letter P stands for

polarizations, E for endomorphisms, and L for level structures.

3.1. p-integral PEL datum

Let p be a prime as before. Let D := (B, ∗, V, ψ,OB , L0, h) be a tuple,

called a p-integral PEL datum, where

• B is a finite-dimensional semi-simple algebra over Q together with a

positive involution ∗, that is, one has trB/Q(bb
∗) > 0 for all b 6= 0 ∈ B;

• V is a finite faithful B-module together with a non-degenerate Q-valued

skew-Hermitian form ψ. That is, ψ : V × V → Q is a non-degenerate

alternating form such that ψ(bx, y) = ψ(x, b∗y) for all x, y ∈ V and
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b ∈ B.

• OB ⊂ B is an order which is stable under ∗ and is maximal at p, that is,

OB ⊗ Zp is a maximal order in B ⊗Qp;

• L0 ⊂ V is an OB-lattice such that ψ(L0, L0) ⊂ Z and L0⊗Zp is self-dual

with respect to the pairing ψ;

• h : C× → GR is a homomorphism of R-groups such that Int(h(i)) is a

Cartan involution on the adjoint group Gad
R .

Here the reductive group G over Q is defined by

G(Q) := {x ∈ GLB(V ) |x′x ∈ Q× }, (3.1)

where x 7→ x′ is the adjoint with respect to the pairing ψ. The datum

(B, ∗, V, ψ) is called a (rational) PEL datum. I think given a pair (B, ∗),

it is not always possible to admit an order OB which is both stable under

∗ maximal at p. We need to assume that such an order exists. Similarly

the existence of the OB-lattice L0 as above may also need some condition;

we need to modify ψ, if necessary, so that such lattice L0 exists. We also

remark that the datum h is part of information determined by (B, ∗, V, ψ)

(up to conjugate by an element in G(R); see Kottwitz [14, Section 4]).

3.2. µ-ordinarity

We assume that the group GQp is unramified. That is, GQp is quasi-

split and split over an unramified finite field extension of Qp. Equivalently,

B ⊗Qp ≃
∏

iMatni
(Fi), where each Fi/Qp is an unramified field extension.

Fix an embedding Q →֒ Qp. This gives rise to a prime p ⊂ OE ⊂ E(G,X),

where E(G,X) is the reflex field of the data. Using the same formulation

and the moduli interpretation as defined in Section 1, we define the moduli

space MD of abelian varieties with the additional structures arising from

the datum D.

Let k = k̄ be an algebraically closed field of characteristic p > 0. Kot-

twitz defines a Newton map

ν : MD(k) → X∗(T )Q/Ω0, (3.2)

where to each point x = (A,λ, ι, η̄) ∈ MD(k), one associates the Newton

vector ν(x). Here T ⊂ G is a maximal torus over Qp and Ω0 is the Weyl
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group of T .

Now let µ : GmC → GC be the Hodge co-character (µ := hC(z, 1)).

The G(C)-conjugacy class of µ gives rise to element in X∗(T )/Ω0, which we

denote by µ again. Denote by µ̄ the Gal(Ep/Qp)-Galois average of µ:

µ̄ :=
1

#Gal(Ep/Qp)

∑

σ∈Gal(Ep/Qp)

σµ ∈ X∗(T )Q/Ω0. (3.3)

Note that in general Ep is not Galois over Qp. This means that

Gal(Ep/Qp) = Gal(Ẽp/Qp)/Gal(Ẽp/Ep),

where Ẽp is any finite field extension containing Ep which is Galois over Qp.

Then the definition µ̄ in (3.3) makes sense.

In the case where G is connected, one has the Hodge-Newton inequality

(in the Bruhat order)

ν(x) � µ̄, ∀x ∈ MD(k). (3.4)

In this case (that is, the group does not contain a Q-simple factor which is

of type D in the Dynkin classification), one defines the open subset

Mµ-ord
D

:= (x ∈ MD | ν(x) = µ̄}, (3.5)

called the µ-ordinary locus of MD.

Now consider the case where the defining group G is not connected, that

is, G contains a Q-simple factor which is of type D. Let µ : GmC → GC and

let

µ(1) = µ, µ(2), . . . , µ(m) (3.6)

be all Hodge co-characters obtained by G(C)-conjugates. For each i, let

µ̄(i) be the Galois average of µ(i) defined by (3.3). Then the Hodge-Newton

inequality states that for any x ∈ MD(k), one has

ν(x) � µ̄(i), for some i = 1, . . . ,m. (3.7)

Now one defines the µ-ordinary locus Mµ-ord
D

by

Mµ-ord
D

:= (x ∈ MD | ν(x) = µ̄(i) for some i = 1, . . . ,m}. (3.8)

In other words, one defines the µ-ordinary locus to be union of all maximal

Newton strata. Now we can state the main result of Wedhorn in [32].
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Theorem 3.1 (Wedhorn). Assume that GQp is unramified and that p 6= 2.

Then the µ-ordinary locus Mµ−ord
D

⊂ MD is open and dense.

In other words, the moduli space MD is the union of the Zariski closure

of maximal Newton strata.

In the case whereG is not connected, we can define for each i = 1, . . . ,m,

the µ(i)-ordinary locus:

Mµ(i)-ord
D

:= (x ∈ MD | ν(x) = µ̄(i) }. (3.9)

Then one has the disjoint decomposition

Mµ-ord
D

=
m∐

i=1

Mµ(i)-ord
D

.

Is it true that for each i = 1, . . . ,m, the µ(i)-ordinary locus Mµ(i)-ord
D

non-

empty?

4. Ingredients of the Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into two parts.

1. We study the Kottwitz-Rapoport (KR) stratification on the moduli space

M. From this we show that the smooth locus Msm ⊂ M is open and

dense in M.

2. Deform any point x in the smooth locus Msm to a point y in the ordinary

locus Mord. That is, the ordinary locus Mord is open and dense in the

smooth locus Msm.

We point out that the step (1) may be a non-trivial fact. This of course

follows immediately if we knew that the special fiberM is reduced. However,

the latter is not known yet. The step (1) of using the KR stratification is a

new ingredient from the proof of Wedhorn’s Theorem (Theorem 3.1). The

method to construct deformations in the step (2) is the same as that in

Wedhorn’s proof. There is no new difficulty in this step though one still

needs to treat the ramification.

U. Görtz showed the following result, which is in the content of the

Rapoport-Zink conjecture [30, p. 95] about the flatness of local models .
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Theorem 4.1 (Görtz [7]). The structure morphism M → SpecZ(p) is topo-

logically flat. That is, every generic points in the special fiber can be lifted

to characteristic zero.

Theorem 4.1 provides an evidence that the integral model M could be

flat over SpecZ(p). It follows from Görtz’s Theorem (Theorem 4.1) that the

integral model M → Spec Z(p) would be flat provided that the special fiber

M is reduced (or that the moduli scheme M is reduced).

Note that the flatness of an integral model usually does not say anything

about whether or not the special fiber is reduced. There are already some

examples given by curves: The special fiber of the minimal regular integral

model for a projective smooth curve over a complete discrete valuation field

K may have non-reduced irreducible components.

Let Mcan denote the scheme-theoretic closure of the general fiber MQ

in M. The closed subscheme Mcan ⊂ M is defined by the ideal leaf in

OM generated by the p-power torsions. By definition Mcan → SpecZ(p)

is flat. Since the generic fiber MQ is reduced, so is the scheme Mcan. Let

Mcan := Mcan⊗Z(p)
Fp denote the reduction modulo p ofMcan. The following

is a special case of results of Pappas and Xinwen Zhu [29].

Theorem 4.2 (Pappas-Zhu). The reduced subscheme (Mcan)red of Mcan is

a union of normal subvarieties.

In fact, they proved much more results concerning the closure of each KR

stratum. The methods of Xuhua He in [11] may lead to conclude that Mcan

is Cohen-Macaulay and normal, which is still under investigation (noticing

that p could be ramified in the totally real field here).

Let I be the ideal sheaf of the closed subscheme Mcan ⊂ M. Since the

inclusion map Mcan → M is a homeomorphism, the ideal I is nilpotent, that

is Mcan = Mred. Let

Supp(I) := {x ∈ M | Ix 6= 0}

= {x ∈ M | the surjective map OM,x → OMcan,x

is not an isomorphism}. (4.1)

It would be interesting to know what the support Supp(I) is. We know that

Supp(I) ⊂ M has co-dimension at least two.
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Through the study of the KR stratification, Theorems 4.1 and 4.2 and

together with a recent result of Kai-Wen Lan [24], we obtain the following

result. A detailed proof of this result will be given elsewhere.

Theorem 4.3. The moduli space M is irreducible (after fixing an N -th root

of unity ζN).

5. The Kottwitz-Rapoport Stratification

5.1. Local models

Now we come to explain the first part of the proof of Theorem 1.1. We

show this through studying the Kottwitz-Rapoport (KR) stratification. Let

F , V , ψ, L0 be as in Section 1. Put

Op := OF ⊗ Zp =
∏

v|p

Ov. (5.1)

Let ev and fv be the ramification index and inert degree of v, respectively.

Put Λ := L0 ⊗Z Zp; this is a free Op-module of rank 2m together with a

Zp-valued skew-Hermitian form ψ : Λ× Λ → Zp. Let G := GU(Λ, ψ) be the

automorphism group scheme of (Λ, ψ) over Zp; this is a group scheme over

Zp which represents the following functor: For any Zp-algebra R, G(R) :=

GU(Λ ⊗Zp R,ψ), which consists of Op ⊗ R-automorphisms on Λ ⊗ R that

preserve the pairing ψ up to a scalar in R×. Denote by MΛ the associated

local model. This is a projective scheme over SpecZp of finite type which

represents the following functor. For any Zp-scheme S, MΛ(S) is the set of

all locally free OS-submodules F ⊂ Λ⊗OS of rank md such that

• locally in the Zariski topology in S, F is a direct summand of Λ⊗OS ;

• F is Op-invariant and is isotropic with respect to the pairing ψ;

• F satisfies the determinant condition; cf. (1.4).

Let MΛ := MΛ⊗Fp be the reduction modulo p of the local model MΛ.

5.2. Local model diagrams

Let M̃ denote the moduli space over Fp parameterizing equivalence

classes of objects (A, ξ), where A = (A,λ, ι, η̄) is an object in M and
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ξ : HDR
1 (A/S) ≃ Λ ⊗ OS is an Op ⊗Zp OS -linear isomorphism that pre-

serves the pairings up to a scalar in O×
S . We have the local model diagram

(see de Jong [4] and Rapoport-Zink [30]):

(5.2)

In the above diagram ϕloc is the morphism that sends each object (A, ξ) to

the image ξ(ω′) of the Hodge submodule ω′ ⊂ HDR
1 (A), and ϕmod is the

morphism that forgets the trivialization ξ.

The special fiber G ⊗ Fp of G acts on M̃ and on MΛ from the left. One

has that

• the morphism ϕloc is G ⊗ Fp-equivalent, surjective and smooth, and

• the morphism ϕmod : M̃ → M is a G ⊗ Fp-torsor.

5.3. Kottwitz-Rapoport stratification

Let

MΛ =
∐

e∈Adm(µ)

MΛ,e (5.3)

be the decomposition of MΛ into the G ⊗ Fp-orbits, where Adm(µ) is the

finite index set for the orbit spaces. The set Adm(µ) is also called the µ-

admissible set, which is originally defined by group theory and shown to

agree with the set of geometric orbits; see Section 5.4. For this moment, we

just regard it as the orbit set, which is defined by geometry. Pull back the

G ⊗ Fp-orbits in (5.3) to the moduli space M̃ and get a stratification of M̃

into locally closed subsets:

M̃ =
∐

e∈Adm(µ)

M̃e. (5.4)

Since ϕmod is a G ⊗ Fp-torsor, the stratification of M̃ descends to a stratifi-

cation of M:

M =
∐

e∈Adm(µ)

Me, (5.5)

which is called the KR stratification. Notice that the morphism ϕloc is sur-

jective if and only if each KR stratum Me is nonempty for e ∈ Adm(µ).
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5.4. Description of Adm(µ)

Let k be an algebraically closed field of characteristic p, W =W (k) the

ring of Witt vectors over k and L := Frac(W ) the fraction field. Let Onr
v be

the etale extension of Zp in Ov and Onr
p :=

∏
v|pO

nr
v . Set

Σ := HomZp(O
nr
p ,W ) =

∐

v|p

Σv, and Σv := HomZp(O
nr
p ,W ).

Regard G(L) ⊂
∏

v|p

∏
α∈Σv

GSp2m(FvL) as a subgroup. Let T ⊂ B ⊂

G be the diagonal maximal torus over Qp and the upper triangular Borel

subgroup. Denote by X∗(T )L the group of co-characters defined over L. Let

X∗(T )L,+ ⊂ X∗(T )L be the subset of dominant co-characters with respect

to B. The Cartan decomposition gives the following natural bijection

X∗(T )L,+
ev

−−−−→ G(W )\G(L)/G(W ), t 7→ [(t(̟v))v|p,α∈Σv
)], (5.6)

where ̟v is an uniformizer of Ov ⊂ Fv and the bracket [x] denotes the

double coset G(W )xG(W ).

Let µ := µh : GmC → GC be the Hodge co-character defined by h. The

G(C)-conjugacy class of µ defines a dominant co-character still denoted by

µ ∈ X∗(T )+. Then there is an unique element tµ ∈ X∗(T )L,+ such that

ev(tµ) = [µ(p)]. Explicitly,

tµ = (eα)α, eα = (ev, . . . , ev, 0, . . . , 0) (each multiplicity m),

where α ranges elements in Σ and v is the place for which Σv contains α.

The original group-theoretic definition of the µ-admissible set is given

by

Adm(µ) := {e ∈ X∗(T )L,+ | e � tµ }, (5.7)

where � denotes the Bruhat order. It is shown in Haines and Ngô [10,

Theorems 1, 4 and Proposition 5] (also see [7, Theorem 7.2]) that it coincides

with the set Adm(µ) defined in (5.3) by geometry1 .

1There are actually three finite subsets that are shown latter to be identical: the set of
Schubert cells in the special fiber MΛ of the local model (seemingly no name for it), the set
Perm(µ) of µ-permissible elements and the set Adm(µ) of the µ-admissible elements (whose
original definition is given by (5.7) in the present paper). The set Perm(µ) is the translation
of the first one in group theory though they are defined a priori in two different sources. The
equality of Perm(µ) and Adm(µ) is the precise statement proved in Haines and Ngô. After
Perm(µ) = Adm(µ) is proved, we use the term Adm(µ) for the set of KR types.
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We have the following result.

Theorem 5.1.

1. For each element e ∈ Adm(µ), the KR stratum Me is nonempty. If Me

denotes the Zariski closure of Me in M, then one has

Me =
⋃

e′�e

Me′ . (5.8)

2. Each KR stratum Me is smooth, equi-dimensional, and

dimMe = 〈2ρ, e〉, (5.9)

where ρ is the half sum of all positive roots.

3. There is a unique minimal KR stratum and a unique maximal KR stra-

tum Mtµ . Moreover, the maximal KR stratum Mtµ is exactly the smooth

locus Msm.

An immediate consequence of Theorem 5.1 is the following.

Corollary 5.2. The smooth locus Msm ⊂ M is open and dense.

This finishes the first step of the proof. For the second step, we construct

the universal deformation for every point x in the smooth locus Msm. Then

we show that the generic fiber of the universal deformation is indeed ordinary.

For details, we refer to the forthcoming paper.

This finishes the sketch of the proof of our main result Theorem 1.1.

6. Proof of Theorem 5.1

We keep the notations of the previous section.

6.1. Relation with the Lie stratification

We shall compare the KR stratification with the Lie stratification on

M; the latter is introduced in [35] in the Hilbert-Blumenthal case. Let k,

W = W (k), Σ and Σv be as in the previous section. We say a place v of F

over p is associated to an element α ∈ Σ if α ∈ Σv.

Using the decomposition Λ⊗Zp W =
∏

αΛα, one has the decomposition

of the local model MΛ ⊗Zp W =
∏

α MΛα . The set Adm(µ) of µ-admissible
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elements also decomposes as the product:

Adm(µ) =
∏

α

Adm(µ)α,

where

Adm(µ)α={(e1, . . . , e2m) ∈ Z2m | 0≤ei≤ev, ei≥ei+1, ei+e2m−i+1=ev ∀ i },

where v is the place associated to α. If one writes two elements e = (eα), e
′ =

(e′α) ∈ Adm(µ) as

eα = (eα,1, . . . , eα,2m), e′α = (e′α,1, . . . , e
′
α,2m), ∀α

then e � e′ if and only if

eα,i ≤ e′α,i ∀α ∈ Σ and i = 1, . . . ,m.

Thus, there is a unique maximal element tµ in Adm(µ) and a unique minimal

element emin, which is the following element

emin = (emin,α)α, emin,α = (cv, . . . , cv , ev − cv , . . . ev − cv),

where v is the place associated to α and cv = ⌈ev/2⌉.

Suppose that F = ⊕αFα ∈ MΛ(k) is a k-valued element. Then each

Fα ⊂ Λα⊗k is a k[πv ]/(π
ev
v )-module which is a maximal isotropic submodule

with respect to ψ, where πv is a uniformizer of Fv . The lift F̃α of Fα in Λ

fits into the lattices

pΛα ⊂ F̃α ⊂ Λα.

According to the definition, the KR type of Fα equals the relative position

inv(Λα, F̃α), which is (e1, . . . , e2m) ∈ Z2m
≥0 if there is an isomorphism

Λα

F̃α

≃

2m⊕

i=1

k[πv]/(π
ei
v )

of k[πv]/(π
ev
v )-modules where the integers ei are ordered decreasingly. In

other words, if one has an isomorphism

Λα ⊗ k

Fα
≃

2m⊕

i=1

k[πv]/(π
ei
v )

of k[πv]/(π
ev
v )-modules for some integers e1 ≥ · · · ≥ e2m ≥ 0, then the KR

type of Fα is equal to (e1, . . . , e2m).
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Suppose A = (A,Λ, ι, η̄) ∈ M(k) is an object over k. Let M be the

covariant Dieudonné module of A. Write

Lie(A) =
⊕

α∈Σ

Lie(A)α, and Lie(A)α ≃
2m⊕

i=1

k[πv]/(π
eα,i
v ),

for some non-negative integers eα,1 ≥ · · · ≥ eα,2m, where Lie(A)α is the

α-eigenspace of Lie(A). The Lie type e(A) of A is defined to be

e(A) = (eα)α∈Σ, eα = (eα,1, . . . , eα,2m).

Under any choice of isomorphismM ≃ Λ⊗W of skew-Hermitian Op⊗Zp

W -modules over W , one has an isomorphism

Lie(A) ≃ (Λ⊗ k)/F

of Op⊗ k-modules. Therefore, the KR type of A equals to the Lie type of A

as a collection of 2m-tuples of non-negative integers indexed by Σ.

Lemma 6.1. The KR type of any object A in M(k) is equal to the Lie type

of A as a collection of 2m-tuples of non-negative integers indexed by Σ. In

particular, the set of KR strata of M is that of Lie strata of M.

6.2. Nonemptiness of KR strata

Let x ∈ M(k) be a k-valued point and denote byMx ⊂ M the spectrum

of the completion ÔM,x of the local ringOM,x at x. Choose any trivialization

of the de Rham homology

HDR
1 (Auniv/ÔM,x) ≃ Λ⊗ ÔM,x.

This defines a section of ϕmod : M̃ → M over Mx and get a morphism

ξ : Mx → MΛ after composing with the morphism ϕloc. If y ∈ MΛ(k) is

the corresponding closed point and MΛ,y is the spectrum of the completed

local ring of MΛ at y, then one has the isomorphism ξ : Mx → MΛ,y, which

follows from the Grothendieck-Messing deformation theory. Moreover, from

the discussion above, the set of (non-closed) points with a fixed KR type e

is sent to that of the same KR type.

In the local model, if y lies in the minimal Schubert cell of MΛ, then

the local space MΛ,y contains points of all KR types. Therefore, in order
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to show the non-emptiness of KR strata it suffices to show that the minimal

KR stratum of M is nonempty. Since KR strata are Lie strata (Lemma 6.1),

it amounts to show that the minimal Lie stratum is nonempty.

Lemma 6.2. There is a superspecial point A ∈ M so that e(A) = emin.

Proof. By Theorem 2.1 and Proposition 3.1 of [38], it is sufficient to con-

struct a superspecial separably quasi-polarized Dieudonné Op-module M of

rank 2dm whose Lie type is equal to emin. One can reduce the construction

to the case m = 1 as if such a Dieudonné module M0 of rank 2d exists,

then one takes M = Mm
0 . For the case m = 1, i.e. the Hilbert-Blumenthal

case, the quasi-polarized superspecial Dieudonné modules is classified in [37,

Section 3]. In particular, there is a superspecial separably quasi-polarized

Dieudonné Op-moduleM0 of rank 2d whose Lie type is emin. This completes

the proof of the lemmas. ���

Therefore, we obtain the following result.

Corollary 6.3. For each e ∈ Adm(µ), the KR stratum Me is nonempty.

6.3. Proof of Theorem 5.1

(1) We have proven the first statement. The second statement follows from

the closure relation of Schubert cells in the local model MΛ.

(2) Since the KR stratum Me and the corresponding Schubert cell MΛ,e

are smoothly equivalent of the same relative dimension, Me is smooth,

equi-dimensional, and

dimMe = dimMΛ,e = ℓ(e),

where ℓ(e) is the length of e. The length function ℓ(e) is given by (see

Ngô and Polo [19], a dimension formula2 before Lemma 2.2)

ℓ(e) = 〈2ρ, e〉.

(3) The partial ordered set Adm(µ) has a unique minimal element emin

and a unique maximal element emax = tµ as already described in Sec-

tion 6.1. We calculate the tangent spaces (Lemma 6.5) and conclude

that MΛ,emax
= Msm

Λ . ���

2The author was not aware where the length formula is first given.
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6.4. Tangent space calculation

We shall compute the tangent spaces of MΛα . For brevity, we suppress

α from the notation and write e and π for ev and πv, respectively. Put R =

k[π]/(πe). One writes Λ = R2m with the standard basis x1, . . . , x2m and the

non-degenerate alternating pairing ψ : Λ × Λ → R with ψ(xi, x2m−i+1) = 1

for i = 1, . . . ,m and ψ(xi, xj) = 0 if i + j 6= 2m + 1. Let e = (e1, . . . , e2m)

be a KR type. Then

F (e) := 〈πe−e1x1, . . . , π
e−e2mx2m〉R

is a special point in the Schubert cell MΛ,e. We want to compute the tangent

space TF (e)(MΛ) at the point F (e).

The equi-characteristic first order deformations of F (e) invariant under

R-action are classified by the vector space

T (e) := HomR(F (e),Λ/F (e)).

For each ϕ ∈ T (e), the corresponding first order deformation is given by

F̃ (e)(ϕ) = 〈y1 + ϕ(y1)ε, . . . , y2m + ϕ(y2m)ε〉R[ε].

where

yi := πe−eixi, i = 1, . . . , 2m. (6.1)

The submodule F̃ (e)(ϕ) is isotropic with respect to ψ if and only if the

following condition

(∗) ψ(yi, ϕ(yj)) = ψ(yj , ϕ(yi)), ∀ 1 ≤ i < j ≤ 2m

holds. Put

T (e)sym := {ϕ ∈ T (e) | (∗) holds }.

Then we have the following

Lemma 6.4. The tangent space TF (e)(MΛ) is isomorphic to the vector space

T (e)sym.

Lemma 6.5. One has dimTF (e)(MΛ) ≥ em(m + 1)/2. The equality holds

if and only if e = emax := (e, . . . , e, 0, . . . , 0).

Proof. The case e = 1 is obvious and we may assume that e ≥ 2. When

e = emax, one has F (e) = 〈x1, . . . , xm〉R. Write

ϕ(xj) =

m∑

i=1

aij x̄2m−i+1 aij ∈ R
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= a1jx̄2m + a2j x̄2m−1 + · · · + amj x̄m+1, (6.2)

where x̄i is the image of xi in Λ/F (e). One easily computes

ψ(xi, ϕ(xj)) = ai,j, ∀ 1 ≤ i, j ≤ m

and hence the condition (∗) is simply the condition ai,j = aj,i for all 1 ≤

i ≤ j ≤ m. Thus, dimk T (emax)
sym = em(m+ 1)/2. Since the dimension of

tangent spaces is a upper semi-continuous function, one gets

dimTF (e)(MΛ) ≥ dimTF (emax)
(MΛ) =

em(m+ 1)

2
.

Put e′ := (e, . . . , e, e − 1, 1, 0 . . . , 0). Then F (e′) is generated by y1, . . .,

ym+1 over R, where yi are in (6.1). For d ≤ e − 1, denote by Rd ⊂ R the

subspace consisting of all elements of degree at most d in π; dimk Rd = d+1.

For ϕ ∈ T (e′), write

ϕ(yj) =
m+1∑

i=1

ai,j x̄2m−i+1,

= a1,j x̄2m + · · ·+ am−1,j x̄m+2 + am,j x̄m+1 + am+1,j x̄m, (6.3)

where

ai,j ∈ R for 1 ≤ i ≤ m− 1, am,j ∈ Re−2 and am+1,j ∈ R0

(because πe−1x̄m+1 and πx̄m = 0). It follows from πe−1ϕ(ym) = 0 that

ai,m ∈ πR (for 1 ≤ i ≤ m− 1), am,m ∈ Re−2 and am+1,m ∈ R0.

It follows from πϕ(ym+1) = 0 that

ai,m+1 ∈ πe−1R (for 1 ≤ i ≤ m− 1), am,m+1 ∈ Re−2 ∩ π
e−2R = πe−2k

and am+1,m+1 ∈ R0. One computes

ψ(yi, ϕ(yj)) =





ai,j for 1 ≤ i ≤ m− 1,

πam,j for i = m,

πe−1am+1,j for i = m+ 1.

(6.4)

The symmetric condition (∗) is rephrased as




ai,j = aj,i for 1 ≤ i < j ≤ m− 1,

ai,m = πam,i for 1 ≤ i < j = m,

ai,m+1 = πe−1am+1,i for 1 ≤ i ≤ m− 1 and j = m+ 1,

πam,m+1 = πe−1am+1,m for (i, j) = (m,m+ 1).

(6.5)
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We see that in the (m+1)×(m+1) matrix (ai,j), themth column andm+1th

column are determined by the mth row and m+ 1th row, respectively. The

left upper (m− 1) × (m− 1) block (ai,j) has dimension em(m − 1)/2. The

mth row (am,1, . . . am,m) of size m has dimension (e− 1)m. Finally m+1th

row (am+1,1, . . . , am+1,m+1) has dimension m+ 1. Therefore,

dimTF (e′)(MΛ) =
em(m− 1)

2
+(e−1)m+(m+1) =

em(m+ 1)

2
+1. (6.6)

If e is not a maximal KR type, then e � e′ and

dimTF (e)(MΛ) ≥ dimTF (e′)(MΛ) >
em(m+ 1)

2
.

This completes the proof of the lemma. ���
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Shalika géométrique. J. Algebraic Geom., 10 (2001), no. 3, 515-547.

20. P. Norman, An algorithm for computing moduli of abelian varieties. Ann. Math., 101
(1975), 499-509.

21. P. Norman, Lifting abelian varieties. Invent. Math., 64 (1981), 431-443.

22. P. Norman and F. Oort, Moduli of abelian varieties, Ann. Math., 112 (1980), 413-439.

23. F. Oort, Finite group schemes, local moduli for abelian varieties, and lifting problems.
Algebraic Geometry (Oslo) 223-254 (1972).

24. Kai-Wen Lan, Compactifications of PEL-type Shimura varieties in ramified character-
istics. Preprint, July 2014.



2014] DENSITY OF THE ORDINARY LOCUS 733

25. G. Pappas, On the arithmetic moduli schemes of PEL Shimura varieties. J. Algebraic
Geom., 9 (2000), 577-605.

26. G. Pappas and M. Rapoport, Local models in the ramified case I. The EL-case. J.
Algebraic Geom., 12 (2003), 107-145.

27. G. Pappas and M. Rapoport, Local models in the ramified case II. Splitting models.
Duke Math. J., 127 (2005), 193-250.

28. G. Pappas and M. Rapoport, Local models in the ramified case. III. Unitary groups.
J. Inst. Math. Jussieu, 8 (2009), no. 3, 507-564.

29. G. Pappas and Xinwen Zhu, Local models of Shimura varieties and a conjecture of
Kottwitz, Invent. Math., 194 (2013), no. 1, 147-254.

30. M. Rapoport and Th. Zink, Period Spaces for p-divisible groups. Ann. Math. Studies

141, Princeton Univ. Press, 1996.

31. H. Stamm, On the reduction of the Hilbert-Blumenthal-moduli scheme with Γ0(p)-
level structure. Forum Math., 4 (1997), 405-455.

32. T. Wedhorn, Ordinariness in good reductions of Shimura varieties of PEL-type. Ann.
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