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Abstract

We consider the numerical solution of large-scale continuous-time algebraic Riccati equa-
tions by projection methods using Krylov subspaces. More importantly, we show that the
solvability of the projected algebraic Riccati equation does not have to be assumed but can
be inherited. Illustrative numerical examples are presented.
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1 Introduction

In this paper we consider the large-scale continuous-time algebraic Riccati equations (CAREs),
especially the application of projection methods in general and the inheritance of solvability
conditions from a CARE by the corresponding projected equation in particular. This inheritance
property is obviously important but has not been investigated previously.

1.1 Algebraic Riccati Equations

Consider the linear time-invariant (LTI) control system in continuous-time:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n with m, l ≤ n. The linear quadratic Gaussian
(LQG) control minimizes the cost functional Jc(x, u) ≡

∫∞
0

[
x(t)>Hx(t) + u(t)>Ru(t)

]
dt, with

H ≡ C>C ≥ 0 and R > 0. Here, a symmetric matrix is positive (semi-)definite, denoted by
M > 0 (≥ 0), when all its eigenvalues are positive (non-negative). Also, M > N (M ≥ N) iff
M − N > 0 (≥ 0). The corresponding optimal control u(t) = −R−1B>Xx(t) can be expressed
in terms of the unique positive semi-definite stabilizing solution X of the CARE [9, 11, 35, 41]:

C(X) ≡ A>X +XA−XGX +H = 0, G = BR−1B> ≥ 0. (1)
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(We have neglected the estimation of the state x from filtering processes in real-life applications.)
Analogously for the LTI control system in discrete-time, the corresponding LQG control re-

quires the solution of the discrete-time algebraic Riccati equation (DARE) [9, 12, 35, 41].

1.2 Previous Work

The solution of AREs (including CAREs and DAREs) is an active area of research due to its
importance in optimal control and filtering. Many in control theory and applied mathematics
worked on the problem, contributed dozens of methods [9, 11, 12, 35, 41]. Classical approaches
made use of canonical forms, determinants and polynomial manipulation and state-of-the-art
ones work in a numerically stable manner; see [11, 12] and their references for more details. A
favourite approach reformulates the AREs as eigenvalue problems [36] and has been implemented
in MATLAB (as the commands care and dare). Another favourite is the Newton-Kleinman
method [32]. On modern algorithms for AREs of moderate dimensions, consult [11, 12, 36].

For control problems from PDEs and the balancing based model order reduction of large
linear systems, large-scale CAREs, DAREs, Lyapunov and Stein equations have to be solved
[2, 6, 7, 8, 23, 26, 27, 40, 47]. Solving the corresponding CARE may involve the invariant
subspace of the Hamiltonian matrix

H ≡
[

A −G
−H −A>

]
, (2)

usually an prohibitively expensive exercise, as commented in [3].
Benner and his collaborators have done much on large-scale AREs [4, 5, 6, 7, 8, 47]. They built

their methods on Newton’s methods with ADI for the associated Lyapunov and Stein equations.
(The initialization of Newton’s method and the choice of parameters for the ADI are challenging.)
Consult also [1, 26, 27] on various invariant or Krylov subspace methods. The structure-preserving
doubling algorithm (SDA) [11, 12] has been adapted for large-scale problems [37], utilizing the
structure in A and the low rank of H (i.e., l� n).

Inheritance Properties of Projection Methods

The CARE (1) is solvable and yields a unique stabilizing positive semi-definite solution X when
the underlying control system is stabilizable and detectable [35, 41]. As in any numerical method,
the solvability conditions should be reflected in the solution process. Apart from being mathemat-
ically elegant, this will avoid any unnecessary or ill-conditioned computation when the problem is
(nearly) unsolvable. For example, in [36] or the command care in MATLAB, when the eigenval-
ues of H are on or near the imaginary axis, the computation should be carried out more carefully,
or even abandoned, for the ill-conditioned or unsolvable problem.

The projection method is popular for large-scale CAREs, projects the original equation onto
some subspace and produces a small projected CARE (pCARE). However, most papers have not
elaborated on the solvability of the projected equation. One exception is [26], in which a deflation
technique is applied to improve, hopefully, the pCARE. From [26], Jbilou assumed, for increasing
d (the dimension of the Krylov subspace), that the projected systems “{H>d , Bd} is c-stabilizable

and {H>d , C̃1} is c-detectable. These conditions ensure that the (projected) matrix equation has a
unique symmetric positive semi-definite solution Yd. If the preceding conditions are not satisfied
we can use an implicit restart strategy to remove the unstable eigenvalues to obtain a c-stabilizable
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and c-detectable low-order model”. However, it is unclear how the technique directly affects the
solvability of the projected equation.

We quote from other representative literature on the assumed solvability of pCAREs.

(1) Heyouni and Jbilou [2008] [23, after (3.2)] “assume that the projected algebraic Riccati
equation has a unique symmetric positive semi-definite and stabilizing solution”.

(2) In Jbilou [2006] [27, after (2.5)], the pCARE was assumed to be c-stabilizable and c-
detectable, thus uniquely solvable.

(3) In Lin and Simoncini [2015] [39, Section 1], the system matrix A is assumed to be stable.
This limits the applicability of the results as one motive in the LQG control is stabilization.

(4) In Simoncini [2016] [48, after (2.2)], A is assumed to be passive (with a stable field of values)
and dissipative (to pass on the stability to the projected system).

(5) In Simoncini, Szyld and Monsalve [2014] [49, Section 1], A is assumed to be stable or passive.

In Section 2.2, we investigate the inheritance of solvability conditions of projection methods
for the CAREs, or when stabilizability, detectability and other conditions of the original control
system are passed onto, or inherited by, the projected system.

1.3 Main Contributions

In this paper, we prove the unique solvability of the original ARE is inherited by the projected
equation, under the condition that ‖x̌>1 rk‖ (in (13)) and ‖rky̌2‖ (in (18)) are respectively small
relative to τ(A, B) and τ(A>, C>) (from (10b)), where rk denotes the Arnoldi residual (in (5)).
Other inheritance properties are presented in terms of the stability radius and the perturbation
theory, with the latter independent of rk. We have only made a start on the inheritance properties,
leaving many questions unanswered, especially when ‖rk‖ does not diminish.

1.4 Organization of Paper

We consider projection methods for CAREs in Section 2, elaborating on the inheritance of some
solvability conditions. Accuracy is considered in Section 3, some numerical examples are in
Section 4 and we conclude in Section 5.

Notations. The 2- and F-norms are denoted by ‖ · ‖ and ‖ · ‖F respectively. Transposes
and inverses are indicated respectively by (·)> and (·)−1, with the latter assuming invertibility
implicitly. Lazily, we abbreviate (A>)−1 to A−>. The identity matrix is I, occasionally with a
subscript for its dimension. The maximum and minimum singular values are denoted respectively
by σmax(·) and σmin(·), and the condition number κ(A) ≡ σmax(A)/σmin(A). The spectrum is
denoted by Λ(·) and the maximum eigenvalue by λmax(·). The field of real and complex numbers
are respectively R and C, with C+ being the closed right plane. The sets of real m× n matrices
and real symmetric n × n matrices are respectively Rm×n and Sn. Occasionally, we abbreviate
A ≤ C and B ≤ C as A,B ≤ C.
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2 Projection Methods

Projection methods are applicable when the solution X is numerically low-rank. For AREs, this
is well known when H is low-rank with l � n [3, 7, 8, 37]. There are many Krylov subspace
methods, with Kk(M, Z) ≡ span{Z,MZ, · · · ,Mk−1Z} for M = A±> and Z = C>.

The following connection between SDA and K2k(A−Tγ , A−Tγ CT ) (with Aγ ≡ A− γI for γ > 0)
has been suggested in [37]. Via the Cayley transform, the CARE in (1) is equivalent to a DARE.
The SDA [11, 12, 37] can then be applied, corresponding to the Krylov subspace Kk(M, Z) with

M≡ (A>γ +HA−1γ G)−1(A>−γ +HA−1γ G), Z ≡ A−>γ C>.

For computation, we have

A−>γ A>−γ = A−>γ (A>γ + 2γI) = I + 2γA−>γ ,

M = I + 2γ(A>γ +HA−1γ G)−1 = I + 2γA−>γ − 2γA−>γ H(Aγ +GA−>γ H)−1GA−>γ ,

by the Sherman-Morrison-Woodbury formula. Consequently, we have

Kk(M, A−>γ C>) ⊆ Kk(A−>γ , A−>γ C>) ⊆ Kk+1(A−>γ , C>). (3)

Our numerical experience shows that the accuracy of approximate solutions and efficiency are
similar with Kk(A−>γ , A−>γ C>) and Kk(A−>γ , C>). For the rest of the paper, we shall choose the
latter, which is simpler to analyze and apply.

From the Arnoldi process with V0 ≡ C> (orthonormalized), we have the Arnoldi relationship:

A−>γ Vk = VkΩk + ṽk+1r̃
>
k , Vk+1 = [Vk, ṽk+1], (4)

where Ωk is upper block Hessenberg and V >k+1Vk+1 = I. After rearrangement and manipulation

[13, 39, 48], (4) leads to the Arnoldi relationship for A>:

(A− γI)−>Vk = VkΩk + ṽk+1r̃
>
k ⇔ Vk = (A> − γI)VkΩk + (A> − γI)ṽk+1r̃

>
k

⇔ A>VkΩk = Vk(I + γΩk)−A>γ ṽk+1r̃
>
k ⇔ A>Vk = Vk(I + γΩk)Ω−1k −A

>
γ ṽk+1r̃

>
k Ω−1k

⇔ A>Vk = Vk
(
I + γΩk − V >k A>γ ṽk+1r̃

>
k

)
Ω−1k − (I − VkV >k )A>γ ṽk+1r̃

>
k Ω−1k

⇔ A>Vk = VkΦ>k + vk+1r
>
k , (5)

by the QR decomposition [18] −(I−VkV >k )A>s ṽk+1 = vk+1β with v>k+1vk+1 = I, β full-rank, Φ>k ≡(
I + γΩk − V >k A>γ ṽk+1r̃

>
k

)
Ω−1k and r>k ≡ βr̃>k Ω−1k . Consequently, Vk+1 ≡ [Vk, vk+1] retains the

orthonormal columns and Φk = V >k AVk. We refer to rk as the Arnoldi residual which may be
used to control the Arnoldi process (4). Note that Ωk is block Hessenberg but not Φk.

Assuming the low-rank approximation Xk ≡ VkYkV >k ≈ X with Y >k = Yk, G11 ≡ V >k GVk and
H11 ≡ V >k HVk, the Galerkin condition V >k C(Xk)Vk = 0 leads to the pCARE:

Ĉ(Yk) ≡ Φ>k Yk + YkΦk − YkG11Yk +H11 = 0. (6)

As in most publications on Krylov subspace methods, the Arnoldi residual rk, which may per-
sist in norm and does not diminish with respect to k, plays an important part in the convergence
and accuracy of the algorithms. Consult also the discussions in Sections 2.1.1 and 5.1.
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Remark 2.1 (Krylov Subspaces) We base our analysis on the Arnoldi relationship in (5) thus
the corresponding Krylov subspace Kk(A>, C>) may be appropriate for the projection method for
CAREs, in addition to Kk(A−>γ , C>) in (3). There are other possibilities from [23, 26, 27, 39,
48, 49]. Comparing all the Krylov subspaces is a big project not within the scope of our paper.
Our numerical experience suggests that the optimal choice of Kk depends on individual appli-
cations. Between Kk(A>, C>) and Kk(A−>γ , C>) for the examples in Section 4, the execution
times required are similar but the latter sometimes requires a lower-rank approximation. However,
generating the subspaces with A−>γ is more expensive than A> but the difference is minimal.

Remark 2.2 (Efficiency) With a sparse A containing a small number of nonzero elements on
each column and Vk ∈ Rn×d, solving the CARE (1) via the Arnoldi process (5) for M = A> and
the pCARE (6) is very efficient, involving O(n)+O(d3) flops. This operation count is competitive
against other methods, when X is numerically low-rank and d is small. For the Krylov subspaces
with M = A−>γ , appropriate structures in A or an efficient solver for A>γ x = b are required.

2.1 Alternative Interpretation of Projection Methods

Let the orthogonal P ≡ [P1, P2] with P1 ≡ Vk. The solution X of the CARE (1) has the form

X = P

[
Y11 Y12
Y >12 Y22

]
P> =

2∑
i,j=1

PiYijP
>
j ,

where Y21 = Y >12 and Y >ii = Yii (i = 1, 2) from the symmetry of X, and Yij = P>i XPj (i, j = 1, 2).
Obviously, Yk in (6) is an approximation to Y11. From the Arnoldi relationship (5), A21 ≡ P>2 AP1

and A22 ≡ P>2 AP2, we have

P>AP =

[
P>1 AP1 P>1 AP2

P>2 AP1 P>2 AP2

]
=

[
Φk rkv

>
k+1P2

A21 A22

]
. (7)

Equation (7) is important — with ‖rk‖ relatively small, A is essentially triangularized and de-
coupled into two smaller subsystems represented by Φk and A22. In fact, P1 spans approximately
an invariant subspace of A. Furthermore, the decomposition on the right of (7) is almost the
observability canonical form for A, with Φk and A22 representing approximately the observable
and unobservable subsystems, respectively. If {A, C} is detectable, A22 is not far from being
stable. Ignoring the “small” perturbation rkv

>
k+1P2, the spectrum Λ(A) equals to the disjoint

union of Λ(Φk) and Λ(A22). Thus, invertibility of A is passed onto Φk. We shall show later that
stabilizability, detectability and other properties are similarly passed on.

A more precise statement on the relationship between the spectra of A and Φk requires the
following theorem on the perturbation of eigenvalues [50]:

Theorem 2.1 (Theorem 2.10 in [50]) Let P>AP be partitioned as in (7). If δ = sep(Φk, A22)
≡ inf‖X‖=1 ‖A22X − XΦk‖ > 0 and ‖A21‖‖rk‖ < δ2/4, then there exists a unique S such that

W = P1 +P2S spans an invariant subspace of A, and Φk + rkv
>
k+1P2S and A22 − Srkv>k+1P2 are

respectively the representations of A in span(W ) and its orthogonal complement. The matrix S
solves the Riccati equation A22S − SΦk − Srkv>k+1P2S +A21 = 0 with ‖S‖ < 2δ−1‖A21‖.
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Remark 2.3 From Theorem 2.1, Λ(A) equals the disjoint union of Λ(Φk + rkv
>
k+1P2S) and

Λ(A22 − Srkv
>
k+1P2). When A is nonsingular, for example, so is Φk + rkv

>
k+1P2S and if the

nearby matrix Φk (after a perturbation of ∆ ≡ −rkv>k+1P2S of magnitude ‖∆‖ ≤ ‖rk‖‖S‖ <
2δ−1‖A21‖‖rk‖) stays nonsingular, the invertibility of A is then inherited by Φk. This will be the
case when ‖∆‖ is sufficiently small, even if ‖rk‖ is large.

With the Krylov subspace Kk(A−>γ , C>), we have span (C>) ⊆ span (P1). From (7), together

with Gij ≡ P>i GPj and Hij ≡ P>i HPj (i, j = 1, 2; all vanish except H11), we have

C(X) = PP>C(X)PP>

= P

[
Φ>k Y11 + Y11Φk − Y11G11Y11 − g11 +H11 + Ĥ11 Φ̃kY12 + Y12Ã22 − g12 + Ĥ12

∗ Č(Y22)

]
P>

= P

[
Ĉ(Y11)− g11 + Ĥ11 Φ̃kY12 + Y12Ã22 − g12 + Ĥ12

∗ Č(Y22)

]
P> (8)

with ∗ representing the part of the symmetric matrix not needed to be specified and

Č(Y22) ≡ A>22Y22 + Y22A22 − Y22G22Y22 − g22 + Ĥ22,

Φ̃k ≡ Φk −G11Y11, Ã22 ≡ A22 −G22Y22;

Ĥ11 ≡ A>21Y
>
12 + Y12A21, g11 ≡ Y11G12Y

>
12 + Y12G21Y11 + Y12G22Y

>
12 ;

Ĥ12 ≡ Y11rkv
>
k+1P2 +A>21Y22, g12 ≡ Y11G12Y22 + Y12G21Y12;

Ĥ22 ≡ P>2 vk+1r
>
k Y12 + Y >12rkv

>
k+1P2, g22 ≡ Y >12G11Y12 + Y >12G12Y22 + Y22G21Y12.

If Y12, Y22 = 0 then Y11 = Yk. In general, from (8), Yk is a good approximation to Y11 for an
accurate projection method. This suggests an iterative method for X or Yij from the zero starting
point, yielding Yk in the first iteration with Y12 = O(‖Y11rk‖) and Y22 = O(‖Y >12rk‖) (which can
be proved by the Newton-Kantorovich theorem, with details neglected).

2.1.1 When ‖rk‖ Is Not Small

Often the projection method produces an accurate approximation to the solution X of the CARE
(1) when ‖rk‖ is not small. In fact, a small ‖rk‖ reflects the accurate approximation of an
invariant subspace of A by span (P1), which is more useful in solving linear systems or eigenvalue
problems associated with A. For the solution of CAREs, we require X to be numerically low-rank
and ‖P>2 X‖ ≤ εk for an appropriate Krylov subspace span (P1), for the projection method to be
applicable. We then observe that

‖Y12‖, ‖Y22‖ ≤ ‖[Y12, Y22]‖ = ‖P>2 X‖ ≤ εk.

Together with (8), we obtain ‖Ĥ22‖, ‖Y11rk‖ = O(εk), even though ‖rk‖ is not small. (Similarly,
from (28), we see that the residualRk of the approximate solutionXk ≡ VkYkV >k from a projection
method equals ‖Ykrk‖ ≈ ‖Y11rk‖.) From the unique solvability of (1), we deduce that Y11 solves
(6) approximately but no conclusion can be drawn on the (exact) solvability of the pCARE or
whether Yk is stabilizing or definite (c.f. Theorem 2.5). Note that stabilizability and detectability
are only sufficient for the solvability of CAREs, complicating any investigation. For example in
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[26], Jbilou deflated the Krylov subspace so as to eliminate the unstable eigenvalues in Φk. This
may be wasteful to eliminate unstable but controllable poles unnecessarily. Further discussions
can be found in Sections 3.1 and 5.1.

Note that for the inheritance properties in Theorems 2.2–2.4, we require ‖x̌>1 rk‖ and ‖rky̌2‖
(potentially much smaller than ‖rk‖ with ‖x̌1‖, ‖y̌2‖ ≤ 1) to be relatively small.

2.2 Inheritance of Solvability

Consider the projection method with Kk(A−>γ , C>). Recall the Arnoldi relationship (5) or (7)

and denote Bi ≡ P>i B and Ci ≡ CPi (i = 1, 2). We have several approaches to investigate the
solvability conditions of the CARE (1) and its projection (6).

2.2.1 Stabilizability

For all s ∈ C+ (the closed right plane), stabilizability of {A,B} [24, 30, 41, 44] is equivalent to
the full-rank (f.r.) conditions:

[sI −A, B] f.r.⇔ P> [sI −A, B]

[
P 0
0 Im

]
f.r.⇔

[
sI − Φk −rkv>k+1P2 B1

−A21 sI −A22 B2

]
f.r.. (9)

If the rkv
>
k+1P2 term is considered to be an “error” or a “noise”, then the stabilizability of {A, B}

is obviously inherited by the projected system {Φk, B1}. We expand the statement as follows:

(i) If {A, B} is stabilizable but {Φk, B1} is not, or equivalently [sI − Φk, B1] is not full-rank
for all s ∈ C+, then {A, B} is within an O(‖rk‖) distance from unstabilizability. (We obtain
the better result later with ‖rk‖ replaced by the potentially smaller ‖x̌>1 rk‖ in (13).)

(ii) With σmin denoting the smallest singular value, we modify the definition of the distance of
the system {A, B} from uncontrollability in [19, 44] to that for unstabilizability:

τ(A,B) ≡ min{‖[δA, δB]‖F : {A+ δA,B + δB} is not stabilizable} (10a)

= min
s∈C+

σmin(A− sI, B). (10b)

Apply the properties of singular values [18] to the matrix on the right of (9), we have

τ(A,B) = min
s∈C+

σmin

[
sI − Φk B1 −rkv>k+1P2

−A21 B2 sI −A22

]
= min

s∈C+

min
‖[x>

1 ,x
>
2 ]‖=1

∥∥∥∥[x>1 , x
>
2 ]

[
sI − Φk B1 −rkv>k+1P2

−A21 B2 sI −A22

]∥∥∥∥
≤ min

s∈C+

min
‖[x>

1 ,x
>
2 ]‖=1

{∥∥∥∥[x>1 , x
>
2 ]

[
sI − Φk B1 0
−A21 B2 sI −A22

]∥∥∥∥+
∥∥x>1 rk∥∥} . (11)
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Optimizing the first term in (11) with x ≡ [x>1 , x
>
2 ]> = [x̌>1 , x̌

>
2 ]> leads to

τ(A,B) ≤ min
s∈C+

min
‖x‖=1

∥∥∥∥x> [ sI − Φk B1 0
−A21 B2 sI −A22

]∥∥∥∥+ ‖x̌>1 rk‖

≤ min
s∈C+

min
‖x1‖=1

∥∥∥∥[x>1 , 0]

[
sI − Φk B1 0
−A21 B2 sI −A22

]∥∥∥∥+ ‖x̌>1 rk‖

= τ(Φk, B1) + ‖x̌>1 rk‖. (12)

In summary, we have the following theorem:

Theorem 2.2 (Inheritance of Stabilizability) With τ(A,B) measuring the distance from un-
stabilizability as defined in (10) and x̌1 as in (12), assuming τ(A,B) > ‖x̌>1 rk‖, we have

τ(Φk, B1) ≥ τ(A,B)− ‖x̌>1 rk‖ > 0. (13)

Hence {Φk, B1} inherits the stabilizability of {A,B}, after excluding the possibility when τ(A,B)
is relatively small or {A,B} within a distance of ‖x̌>1 rk‖ from being unstabilizable.

In other words, when ‖x̌>1 rk‖ is small enough, the stabilizability of {A,B} is inherited by the
projected system {Φk, B1}.

2.2.2 Detectability

With a sufficiently small ‖rk‖, P>AP is essentially lower triangular in (7). Consequently from
spanC> ⊆ Kk(A−>γ , C>) and (7), for all s ∈ C+, detectability of {A,C} is equivalent to

[
sI −A
C

]
f.r. ⇔

[
P> 0
0 Il

] [
sI −A
C

]
P f.r.⇔

 sI − Φk −rkv>k+1P2

−P>2 AP1 sI − P>2 AP2

CP1 CP2

 f.r.

⇔

 sI − Φk 0
−A21 sI −A22

C1 0

 f.r.⇔

 sI − Φk 0
0 sI −A22

C1 0

 f.r., (14)

implying {Φ>k , C>1 } is detectable, the corresponding inheritance property and the stability of A22.
More rigorously, when considering the minimum singular value similar to (14), we have

τ(A>, C>) ≡ min
s∈C+

σmin

[
sI −A
C

]
= min
s∈C+

σmin

 sI − Φk −rkv>k+1P2

−A21 sI −A22

CP1 0


= min

s∈C+

min
‖[y>1 ,y>2 ]‖=1

∥∥∥∥∥∥
 sI − Φk −rkv>k+1P2

−A21 sI −A22

CP1 0

[ y1
y2

]∥∥∥∥∥∥
≤ min

s∈C+

min
‖[y>1 ,y>2 ]‖=1

∥∥∥∥∥∥
 sI − Φk 0
−A21 sI −A22

CP1 0

[ y1
y2

]∥∥∥∥∥∥+ ‖rkv>k+1P2ỹ2‖, (15)

where y ≡ [y>1 , y
>
2 ]> = [ỹ>1 , ỹ

>
2 ]> optimizes the first term in (15).
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With y̌2 ≡ v>k+1P2ỹ2 and assuming

τ(A>, C>) > ‖rky̌2‖, (16)

(15) implies that A22 is stable. Denote η(s) ≡ −(sI − A22)−1A21, Ψ(s) ≡
[

I 0
η(s) I

]
and

z ≡ Ψ(s)y, we obtain

τ(A>, C>) ≤ min
s∈C+

min
y 6=0


∥∥∥∥∥∥
 sI − Φk 0

0 sI −A22

C1 0

Ψ(s)y

∥∥∥∥∥∥ · 1

‖y‖

+ ‖rky̌2‖

= min
s∈C+

min
y 6=0


∥∥∥∥∥∥
 sI − Φk 0

0 sI −A22

C1 0

 z
∥∥∥∥∥∥ · ‖Ψ(s)‖
‖Ψ(s)‖‖y‖

+ ‖rky̌2‖

From ‖Ψ(s)‖‖y‖ ≥ ‖Ψ(s)y‖ = ‖z‖ and the positive constant

η∗ ≡ max
s∈C+

‖Ψ(s)‖ = max
s∈C+

∥∥∥∥[ I 0
−(sI −A22)−1A21 I

]∥∥∥∥ ≤ 1 + max
s∈C+

‖(sI −A22)−1A21‖, (17)

we have

τ(A>, C>) ≤ η∗ · min
s∈C+

min
y 6=0


∥∥∥∥∥∥
 sI − Φk 0

0 sI −A22

C1 0

 z
∥∥∥∥∥∥ · 1

‖z‖

+ ‖rky̌2‖

= η∗ · min
s∈C+

σmin

 sI − Φk 0
0 sI −A22

C1 0

+ ‖rky̌2‖

≤ η∗ · min
s∈C+

σmin

[
sI − Φk
C1

]
+ ‖rky̌2‖

≤ η∗ · τ(Φ>k , C
>
1 ) + ‖rky̌2‖. (18)

In summary, we have the following theorem:

Theorem 2.3 (Inheritance of Detectability) With τ(A>, C>) measuring the distance from
undetectability as in (10), y̌2 from (16) and η∗ > 0 from (17), we have

η∗ · τ(Φ>k , C
>
1 ) ≥ τ(A>, C>)− ‖rky̌2‖.

Hence, {Φ>k , C>1 } inherits the detectability of {A>, C>} if (16) holds, excluding the possibility of
τ(A>, C>) being relatively small or {A>, C>} within a distance of ‖rky̌2‖ from undetectability.

In other words, when the CARE (1) is uniquely solvable under the assumption of stabilizabil-
ity and detectability, the pCARE (6) inherits the unique solvability, when {A,B,C} is not within
an ‖x̌>1 rk‖ or ‖rky̌2‖ distance from unstabilizability or undetectability, respectively. Note that
‖x̌>1 rk‖ and ‖rky̌2‖ (with ‖x̌1‖, ‖y̌2‖ ≤ 1) may potentially be much smaller than ‖rk‖. The in-
heritance of stabilizability and detectability for other projection methods with alternative Krylov
subspaces has also been proved, when (5) holds with Vk, rk and vk+1 defined differently.
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2.2.3 Inheritance of Solvability from Hamiltonian Formulation

Stabilizability and detectability are only sufficient for the existence of a unique stabilizing positive
semi-definite solution to the CARE (1) [35, 41]. They guarantee the separation of the eigenvalues
of the Hamiltonian matrix H in (2), or the nonexistence of eigenvalues on the imaginary axis.
Considering the solution of CAREs directly in terms of H, we shall investigate the effect of
projection on the stability of H, or the distance of its spectrum from the imaginary axis.

To analyze stability, one good tool is the stability radius or margin [10, 22, 24, 28, 30, 45, 52]:

ψ(M) ≡ min {‖E‖F : M + E is unstable} = min
ω∈R
{σmin(M − ωiI)} .

It is well known that Λ(H) is the union of the the stable and antistable subspectra Λ(A − GX)
and Λ(−(A−GX)) respectively [35, 41], so the stability radius of A−GX:

ψ(A−GX) = min
ω∈R

σmin(A−GX − iωI),

the magnitude of the perturbation to A−GX which will push it to instability, is a good measure
of solvability of the CARE (1). The analogous quantity for the pCARE (6) is

ψ(Φk −G11Yk) ≡ min
ω∈R

σmin(Φk −G11Yk − iωI).

Let Rk ≡ C(Xk), L(·) ≡ A>c (·) + (·)Ac with Ac ≡ A − GX and c1 ≡ 2‖L−1‖‖G‖. From [29,
Theorem 2] (or [48, Theorem 4.1]), when

‖Xk −X‖ < (3‖G‖‖L−1‖)−1, 4‖G‖‖L−1‖2‖Rk‖ < 1, (19)

we have
‖Xk −X‖ ≤ 2‖L−1‖‖Rk‖. (20)

With z = [z>1 , z
>
2 ]> = [ž>1 , ž

>
2 ]> optimizing the first term in (21), techniques similar to those in

Section 2.2.1 and 2.2.2 produce

ψ(A−GX) ≤ ψ(A−GXk) + ‖G(Xk −X)‖ ≤ ψ(A−GXk) + c1‖Rk‖

= ψ

[
Φk −G11Yk rkv

>
k+1P2

A21 − P>2 GP1Yk A22

]
+ c1‖Rk‖

≤ min
ω∈R

min
‖z‖=1

∥∥∥∥z> [ Φk −G11Yk − iωI 0
A21 − P>2 GP1Yk A22 − iωI

]∥∥∥∥+ ‖ž>1 rk‖+ c1‖Rk‖ (21)

≤ min
ω∈R

min
‖z1‖=1

∥∥∥∥[z>1 , 0]

[
Φk −G11Yk − iωI 0
A21 − P>2 GP1Yk A22 − iωI

]∥∥∥∥+ ‖ž>1 rk‖+ c1‖Rk‖

= min
ω∈R

min
‖z1‖=1

∥∥z>1 (Φk −G11Yk − iωI)
∥∥+ ‖ž>1 rk‖+ c1‖Rk‖

= ψ(Φk −G11Yk) + ‖ž>1 rk‖+ c1‖Rk‖.

The following theorem summarizes the inheritance property associated with ψ.

Theorem 2.4 (Inheritance of Stability Radius) Assume (19) and that a unique solution Yk
exists for the pCARE (6). With the stability radius ψ, we have

ψ(Φk −G11Yk) > ψ(A−GX)− ‖ž>1 rk‖ − c1‖Rk‖,
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where ž1 is defined in (21). In other words, Φk − G11Yk inherits the stability of A − GX if
ψ(A − GX) > ‖ž>1 rk‖ + c1‖Rk‖, excluding the possibility of ψ(A − GX) being too small or
A−GX within a distance of ‖ž>1 rk‖+ c1‖Rk‖ from instability.

2.2.4 Inheritance of Solvability from Perturbation Theory

We consider the solvability of the pCARE (6), equivalent to

A>Xk +XkA−XkGXk + (H −Rk) = 0 (22)

when Xk = P1YkP
>
1 . This inheritance property comes from the perturbation theory of CAREs,

with (22) borrowing the solvability of the neighbouring (1). Note that the theorem contains a
computable check for the solvability of the pCARE.

Theorem 2.5 Let Xk from a projection method approximate the unique stabilizing solution X
to CARE (1) with the residual Rk = C(Xk). Define the Lyapunov operator L(·) as in (19). With
Xk = P1YkP

>
1 , Yk is the unique solution to the pCARE (6) if

4‖L−1‖‖L−1Rk‖‖G‖ < 1. (23)

Furthermore, the error satisfies

‖Xk −X‖ ≤
2‖L−1Rk‖

1 +
√

1− 4‖L−1‖‖L−1Rk‖‖G‖
.

Proof. Substituting Xk = X + δXk into the perturbed CARE (22) gives rise to

L(δXk) = δXkGδXk +Rk,

or equivalently,
δXk = L−1(δXkGδXk) + L−1Rk ≡ Υ(δXk).

Then Υ : Bξ → Bξ is a continuous mapping defined on the compact and convex set

Bξ = {δX ∈ Sn : ‖δX‖ ≤ ξ, P>1 δXP2 = −Y12, P>2 δXP2 = −Y22},

where

ξ =
1−

√
1− 4‖L−1‖‖L−1Rk‖‖G‖

2‖L−1‖‖G‖
=

2‖L−1Rk‖
1 +

√
1− 4‖L−1‖‖L−1Rk‖‖G‖

is positive if
4‖L−1‖‖L−1Rk‖‖G‖ < 1. (24)

Consequently, the mapping Υ has a fixed point δXk ∈ Bξ so that Xk = P1(Y11 +P>1 δXkP1)P>1 ≡
P1YkP

>
1 satisfies the perturbed CARE (22).

Moreover from [51, Lemma 2.1], the matrix A − GXk is c-stable if the condition (24) holds,
hence Xk = P1YkP

>
1 must be the unique stabilizing solution to the perturbed CARE (22). Since

P>1 RkP1 = 0, it follows immediately that Yk is the unique solution to the pCARE (6). �
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Remark 2.4 From the above proof and Theorem 2.4, if ψ(A−GXk) > ‖ž>1 rk‖, we obtain

ψ(Φk −G11Yk) ≥ ψ(A−GXk)− ‖ž>1 rk‖ > 0. (25)

We then conclude that Yk is the unique stabilizing solution to the pCARE.
The assumption in (25) is not required if we are satisfied with the uniqueness of Yk but not

whether it is stabilizing. Importantly, the inheritance of solvability of the pCARE is dependent
only on Rk in Theorem 2.5 but independent of rk, unlike other inheritance properties.

3 Accuracy of Projection Methods

There are some interesting results on the errors of projection methods in [48], such as the error in
Xk (Theorem 4.1), the perturbed CARE which Xk satisfies (Proposition 5.1) and the perturbation
of the corresponding stable Hamiltonian invariant subspace (Proposition 6.1). A link between
projection methods and model order reduction can be found in [48, Section 3].

From the Arnoldi relationship (5) and C> ∈ spanP1, we have

P>2 C(Xk) = P>2 (A>VkYkV
>
k + VkYkV

>
k A+ VkYkV

>
k GVkYkV

>
k +H)

= P>2 (VkΦ>k + vk+1r
>
k )YkV

>
k = P>2 vk+1r

>
k YkP

>
1 . (26)

Together with the Galerkin condition P>1 C(Xk)P1 = 0, the residual Rk ≡ C(Xk) satisfies

Rk = PP>C(VkYkV >k )PP> = P

[
P>1 C(Xk)P1 P>1 C(Xk)P2

P>2 C(Xk)P1 P>2 C(Xk)P2

]
P>

= P

[
0 Ykrkv

>
k+1P2

P>2 vk+1r
>
k Yk 0

]
P>, (27)

thus the residual satisfies Rk = vk+1r
>
k YkP

>
1 +P1Ykrkv

>
k+1, implying ‖Rk‖ ≤ 2‖Ykrk‖. Note that

(27) represents the same result as [48, Proposition 5.1]. When considering the singular values of
the matrix on the right of (27), we have the slightly better result:

‖Rk‖2 = λmax

{
Ykrkr

>
k Yk

}
= ‖Ykrk‖2. (28)

This is interesting, especially when ‖rk‖ is large but ‖Rk‖ is small. Notice that Yk is the co-
efficient matrix in Xk = VkYkV

>
k for the Krylov basis vectors in Vk for the projection method.

Assume that the method is producing more accurate approximate solutions for increasing k, as the
Krylov subspaces improve in accuracy by adding less significant components. This corresponds
to (Yk)ij → 0 as i, j →∞, thus κ(Yk)→∞ as k →∞. It also indicates why ‖Rk‖ = ‖Ykrk‖ can
still be small even when rk stagnates and is significant in the last few components. Note also the
result ‖Xk −X‖ ≤ 2‖L−1‖‖Rk‖ in (20) from [29, Theorem 2].

For a lower bound of ‖Rk‖, from (27), we have

r>k = v>k+1RkP1Y
−1
k ⇒ ‖rk‖ = ‖v>k+1RkP1Y

−1
k ‖ ≤ ‖Y

−1
k ‖ · ‖Rk‖, (29)

leading to the equivalence relationship ‖Rk‖/‖Yk‖ ≤ ‖rk‖ ≤ ‖Y −1k ‖·‖Rk‖. Equality results linking
Rk and rk already exist in (28) and (29). For the relative residual ρk ≡ ‖Rk‖/‖Xk‖ = ‖Rk‖/‖Yk‖,
we also have

ρk ≤ ‖rk‖ ≤ κ(Yk)ρk,
‖rk‖
κ(Yk)

≤ ρk ≤ ‖rk‖. (30)
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The bounds involving Y −1k are impractical when Yk is ill-conditioned or numerically low-rank.
From (26), we have the important fact that the CARE has a (hopefully small) O(‖Ykrk‖)

footprint on spanP2. Interestingly and naturally, the condition of Yk is related to the residuals
and rk, as well as the solvability of the original and projected Riccati equations.

3.1 Problems with Arnoldi Process and Truncation

Projection methods may reduce the sizes of the AREs thus the associated workload, but have
their fair shares of problems.

Breakdown An important phenomenon of the Arnoldi process is “breakdown”, as the orthog-
onality of Vk is lost when contaminated by round-off errors. See, e.g., [17] for details. For
the solution of linear systems and eigenvalue problems, breakdowns mean that some invari-
ant subspace of A is well approximated, thus beneficial for the corresponding projection
method. For the solution of CAREs, the Arnoldi residual rk (in (4)) will be very small.
This will be favourable for our investigation of the inheritance properties in Section 2.2.

Stagnation Contrary to breakdowns, “stagnation” generally means the Arnoldi process does
not make any “progress”. For linear systems, the solution is not approximated well until
a very large Krylov subspace is generated, rendering the projection method unsuitable. Of
course, it may be remedied by a more appropriate Krylov subspace. For CAREs, we have
experienced having rk persisted to be significant and not diminishing. However in some of
these cases (as in Examples 1–3, Section 4.2), the projection method still produces accurate
approximate solutions efficiently. In Section 2.2, we see that our analysis for the inheritance
properties in Theorems 2.2–2.4 may fail (not for Example 2 from [26]) but the residual Rk
in Theorem 2.5 can be small.

For the projection method to work for a small k, ‖Rk‖ = ‖Ykrk‖ (from (28)) is small but Yk
is dominated by its upper left corner components. Stagnation means that rk is dominated
by the bottom components, forcing it to be large until k approaches n. These combine
to explain why ‖Rk‖ = ‖Ykrk‖ is small even when rk is significant. Independent of rk, if
‖Rk‖ refuses to diminish, the solution X may not be numerically low-rank and no existing
numerical methods may work for large-scale CAREs. Solving such a CARE may be too
ambitious, as the large high-rank X cannot even be stored explicitly. We may instead
estimate the feedback gain F = −R−1B>X ∈ Rm×n, which is of lower dimensions than X.

We need to conduct further investigation of the inheritance properties when rk stagnates,
especially on how the solvability of the pCAREs can be guaranteed.

Reorthogonalization/Truncation For breakdowns or the loss of linear dependence of Vk in the
Arnoldi process, reorthogonalization [17] can be applied in the corresponding Gram-Schmidt
process. However in our experience, the QR factorization implemented by MATLAB pro-
duces satisfactory results without reorthogonalization.

For Section 4, the QR factorization with column pivoting (similar to the rank-revealing
QR factorization) [18] on [Vk, A

−>
γ Vk] is applied and insignificant components in R (and

the corresponding components in Q) are truncated, controlled by the truncation tolerance
tol def = ε > 0. It is similar to deflation in [27]. Without truncation, the columns of Vk are
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nearly linearly dependent and we have the QR decomposition (ignoring some permutation
matrix), for some small ε:

Vk = QR = [Q1, Q2]

[
R11 R12

0 R22

]
, ‖R22‖ ≤ ε.

Retaining R22 and Q2, the Hamiltonian matrix H in (2) for the pCARE (6) satisfies, with

Φ̃k ≡ Q>1 AQ1, G̃11 ≡ Q>1 GQ1 and H̃11 ≡ Q>1 HQ1:

H̃ ≡
[
R>

R>

] [
Q>

Q>

]
H
[
Q

Q

] [
R

R

]
=

[
R>

R>

] [
Q>AQ −Q>GQ
−Q>HQ −Q>A>Q

] [
R

R

]

=


R>11 0
R>12 0
0 R>11
0 R>12


[

Φ̃k −G̃11

−H̃11 −Φ̃>k

] [
R11 R12 0 0
0 0 R11 R12

]
+O(ε).

So H̃ is the sum of a low-rank matrix and an O(ε) perturbation thus has some O(ε) eigen-
values, rendering it nearly non-Hamiltonian and the corresponding pCARE not uniquely
solvable. This illustrates the importance of truncation.

4 Numerical Examples

We present four examples to illustrate the feasibility of the projection method with Kk(A−>γ , C>).
The non-decreasing quantities in the first set of inequalities in (30) are listed in the 3rd–5th
columns in the tables, where k is the index in Kk and the normalized residual is denoted by

NRes ≡ ‖Rk‖
2‖A>VkYk‖+ ‖YkG11Yk‖+ ‖H11‖

.

Also, ρk, ‖rk‖ and κ(Yk) are defined as in (5) and (30), “Rank” is the rank of Vk, dtk the execution
time consumed in the kth iteration and tk ≡

∑
j≤k dtj . We terminate our computation when

NRes < tol ck. Recall that we may truncate under the control of tol def when applying the QR
decomposition in the Arnoldi process, as discussed in Section 3.1. Importantly, the tables display
the numerical results as if the projection method is iterative. In reality, we start with some k then
increase it to k̃ until some desired accuracy is achieved. We may extrapolate Rk with respect to
k when choosing k̃.

We choose the shift γ in our rational Krylov subspace [13, 14, 15, 16, 20, 21, 43, 46, 48] as
in [37]. For our examples, we choose γ arbitrarily as the choice seems unimportant. For a more
elaborate strategy, consult [48].

All examples have been attempted using MATLAB Ver. R2013a on an HP Z420 with an Intel
Xeon CPU E5-16200 at 3.60 GHz and a 32 GB RAM.
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4.1 Example 0 (Randomly Generated)

Example 0 is generated randomly to illustrate the case when rk diminishes with respect to k.
Here we have n = 10000, m = 4, l = 2, s = 10, α = 10−14, B = rand(n,m), C = rand(l, n) and

A =



−1 α
α · · · α

. . . −s
. . .

α −(s+ 1)α α
. . .

. . . α
α −nα


∈ Rn×n.

We have tol def = 0.0 as there is no need for any truncation.

Table 1: Example 0. n = 10000, m = 4, l = 2, γ = 5, tol ck = 1.00e−14, α = 1.00e−14

k NRes ρk ‖rk‖ κ(Yk)ρk κ(Yk) Rank dtk tk
1 1.1e−03 2.1e−01 2.9e−01 1.1e+01 5.4e+01 2 8.73e−02 8.73e−02
2 4.8e−05 1.4e−02 1.9e+00 5.0e+04 3.7e+06 4 8.62e−03 9.59e−02
3 3.6e−06 1.3e−03 2.5e+00 1.1e+06 8.1e+08 6 3.91e−03 9.99e−02
4 2.8e−07 1.3e−04 1.7e+00 1.7e+05 1.3e+09 8 3.61e−03 1.03e−01
5 2.0e−08 1.0e−05 2.2e+00 1.9e+06 2.0e+11 10 1.03e−02 1.14e−01
6 1.5e−14 1.4e−11 2.7e−06 2.4e+02 1.7e+13 12 4.59e−03 1.18e−01
7 1.2e−14 1.3e−11 2.6e−11 5.2e+05 4.1e+16 14 7.54e−03 1.26e−01

Here, ‖rk‖ is decreasing, with Vk accurate enough and rk is practically zero for k = 7, and
NRes approaches near machine accuracy. Only 1.26 seconds of execution time is required for
the projection method with Kk(A−>γ , C>) for k = 1, · · · , 7. With Kk(A>, C>), the results are
similar to that in Table 1, as described in Remark 2.1. From the 3rd–5th columns in Table 1, the
first set of inequalities in (30) is illustrated. Notice also the increasing condition number κ(Yk)
as predicted. The times in the last two columns are satisfyingly small. Similar comments hold
for Examples 1–3.

4.2 Example 1 (Cooling of Steel Profile)

The example is quoted originally from [6, Chapter 19] with the updated data, in the form of a
generalized CARE (GCARE), from [25]:

A>XE + E>XA− E>XGXE +H = 0,

for some E ∈ Rn×n. This is equivalent to the CARE:

(E−1A)>X̃ + X̃(E−1A)− X̃(E−1GE−>)X̃ +H = 0,

where X̃ ≡ E>XE. To solve the above CARE, E−1A is not required explicitly. Instead, we have

Kk((E−1A− γI)−>, C>) = Kk(E>(A− γE)−>, C>),



16 L. Zhang, H.-Y. Fan and E.K.-W. Chu

Table 2: Example 1. n = 79841, m = 7, l = 6; γ = 1, tol ck = 1.00e−14

k NRes ρk ‖rk‖ κ(Yk)ρk κ(Yk) Rank dtk tk
1 2.8e−01 4.6e+00 7.3e+00 7.4e+01 1.6e+01 6 1.40e+00 1.40e+00
2 9.3e−02 1.1e+00 1.1e+01 9.4e+01 8.5e+01 12 1.30e+00 2.70e+00
3 3.7e−02 6.2e−01 1.3e+01 1.8e+02 2.9e+02 18 1.44e+00 4.14e+00
4 1.8e−02 3.1e−01 1.4e+01 2.9e+02 9.3e+02 24 1.53e+00 5.68e+00
5 9.4e−03 2.0e−01 1.6e+01 4.1e+02 2.0e+03 30 1.51e+00 7.19e+00
6 5.4e−03 1.2e−01 1.9e+01 8.1e+02 7.0e+03 36 1.47e+00 8.66e+00
7 3.0e−03 7.6e−02 2.0e+01 1.8e+03 2.3e+04 42 1.61e+00 1.03e+01
8 2.1e−03 4.6e−02 2.1e+01 4.1e+03 8.8e+04 48 1.56e+00 1.18e+01
9 1.3e−03 3.3e−02 2.2e+01 9.8e+03 3.0e+05 54 1.70e+00 1.35e+01
10 9.9e−04 2.1e−02 2.2e+01 2.5e+04 1.2e+06 60 1.75e+00 1.53e+01
· · ·
245 8.6e−15 6.0e−12 8.1e+01 5.5e+06 9.2e+17 1470 7.46e+01 5.65e+03

involving E> and (A − γE)−>. (There are other ways to handle GCAREs, outside the scope
of this paper.) We have chosen tol def = 0.0 without truncation. We summarize the numerical
results in Table 2 and Figure 1.

For Example 1, ‖rk‖ actually increases with respect to k yet NRes approaches near machine
accuracy with k = 1:245 in 5,650 seconds. Notice again the increasing condition number κ(Yk).
If we know in advance the required dimension of Kk for a desired accuracy, much less execution
time will be required. For example, for k = 245, only 74.6 seconds of execution time is required.
Interestingly, the accuracy of the finite element model behind the example has accuracy, at best,
around O(10−3) and a similar accuracy can be achieved with k =1:5 in 7.19 seconds.

Figure 1: Example 1 (Steel Profile) CARE, n = 79841
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4.3 Example 2 (Jbilou [26, Example 1])

We quote the example from [26], with d = 0.5, B = rand(n, 4), C = I8×n and

A = −



4 1− d 0 · · · 0 1
1 + d 4 1− d 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0
. . .

. . . 1− d
1 0 · · · 0 1 + d 4


.

The Krylov subspaces Kk(A>, C>) improve slowly with increasing k, changing only the first
column in vk+1. The improvement in the Krylov subspace Kk(A−>γ , C>) is equally slow in our
experiments, with ‖rk‖ refusing to diminish. We summarize the numerical results in Table 3.

Table 3: Example 2. n = 1000, m = 4, l = 8; γ = 5, tol def = 1.00e−10, tol ck = 1.00e−15

k NRes ρk ‖rk‖ κ(Yk)ρk κ(Yk) Rank dtk tk
1 6.8e−02 6.1e−01 1.0e+00 1.8e+00 2.9e+00 8 4.99e−02 4.99e−02
2 2.5e−03 3.5e−02 1.5e+00 1.6e+01 4.7e+02 10 7.29e−03 5.72e−02
3 1.4e−04 2.6e−03 1.5e+00 2.9e+02 1.1e+05 12 2.47e−03 5.97e−02
4 9.1e−06 2.1e−04 1.5e+00 5.4e+03 2.6e+07 14 2.53e−03 6.22e−02
5 6.2e−07 1.7e−05 1.5e+00 1.1e+05 6.1e+09 16 2.74e−03 6.49e−02
6 4.5e−08 1.5e−06 1.5e+00 2.1e+06 1.5e+12 18 2.92e−03 6.79e−02
7 3.4e−09 1.3e−07 1.5e+00 4.3e+07 3.5e+14 20 5.23e−03 7.31e−02
8 2.6e−10 1.1e−08 1.5e+00 9.0e+08 8.3e+16 22 7.82e−03 8.09e−02
9 2.0e−11 9.5e−10 1.5e+00 3.1e+10 3.2e+19 24 8.16e−03 8.91e−02
10 1.6e−12 8.3e−11 1.5e+00 9.9e+08 1.2e+19 26 4.39e−03 9.35e−02
11 1.3e−13 7.3e−12 1.5e+00 3.0e+07 4.1e+18 28 5.24e−03 9.87e−02
12 1.1e−14 6.5e−13 1.5e+00 5.2e+06 8.1e+18 30 6.32e−03 1.05e−01
13 8.8e−16 5.8e−14 1.5e+00 3.8e+05 6.7e+18 32 6.02e−03 1.11e−01

The norms of the Arnoldi residuals ‖rk‖ = 1.5 stay constant for k = 2, · · · , 13 but the
normalized residual NRes achieves the machine accuracy of 4.5e−16 when k = 13. However,
the Hamiltonian matrices H and H̃ for the original and pCAREs have no eigenvalues near the
imaginary axis. The spectral information for Example 2 is summarized in Figure 2. The distances
from the imaginary axis for the original CARE and pCARE fall respectively in [1.9937, 6.6567]
and [2.0484, 6.6550], so the stability radius has improved slightly after projection.

We have a large stability radius τ(A,B) ≈ 2 > ‖rk‖ ≈ 1.5 (k ≥ 2), implying an “easy” CARE
and the inheritance of stabilizability. The result in (30) and the ill-condition of Yk are illustrated
in the 3rd–6th columns. The ranks of Vk, thus the execution times required, are small. For
Kk(A>, C>), we achieve the slightly worse result with k = 22, NRes = 4.4e−16, ‖rk‖ = 1.5,
Rank = 50 and tk = 1.92e−01.

Example 2 is originally designed to illustrate the stagnation of rk. However, from our deeper
analysis and numerical experience, ‖rk‖ are actually small relative to Ψ(A − GX) for moderate
values of k, yielding small Rk’s and accurate approximate solutions Xk.
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Figure 2: Spectral properties for Example 2
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4.4 Example 3 (Convective Thermal Flow [23, Example 4.2])

The original model came from [42]. No truncation is applied with tol def = 0.0. We summarized
the results in Table 4 and Figure 3.

Table 4: Example 3. n = 9669, m = 1, l = 5, γ = 1, tol ck = 1.00e−14

k NRes ρk ‖rk‖ κ(Yk)ρk κ(Yk) Rank dtk tk
1 1.9e−01 2.0e+04 2.7e+03 1.0e+05 4.9e+00 5 1.43e−01 1.43e−01
2 7.0e−01 1.3e+01 5.2e+03 5.9e+08 4.6e+07 10 8.49e−02 2.28e−01
3 7.0e−04 6.8e+01 1.1e+04 4.6e+05 6.7e+03 15 7.91e−02 3.07e−01
4 6.9e−04 7.1e+01 1.7e+04 7.9e+05 1.1e+04 20 8.31e−02 3.90e−01
· · ·
145 1.0e−14 2.3e−09 6.3e+04 3.4e+11 1.5e+20 148 6.70e+00 2.79e+02
146 9.7e−15 2.3e−09 6.0e+04 1.4e+12 6.2e+20 148 6.90e+00 2.86e+02

The Arnoldi residual rk does not diminishes as the residual Rk. A near machine accuracy
for NRes is achieved with k = 1:146 in 2,860 seconds. Again, for the finite element model, an
arguably acceptable accuracy of O(10−3) can be achieved with k = 1:3 in 0.3 second.

5 Conclusions

We have presented additional links between the structure-preserving doubling algorithm and pro-
jection methods with rational Krylov subspaces. An analysis of projection methods, when ‖x̌>1 rk‖
or ‖rky̌2‖ small relative to τ(A,B) or τ(A>, C>) respectively, has been presented. The inheri-
tance properties of stabilizability, detectability and other conditions of solvability for projection
methods on CAREs have been investigated. This forms a good basis for further research for the
inheritance properties of projection methods on CAREs.
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Figure 3: Example 3 (Convective Thermal Flow [23, Example 4.2]) CARE, n = 9669

We have presented some numerical results for the projection method using Kk(A−>γ , C>).
A comprehensive comparison of different Krylov subspaces in projection methods for AREs is
a worthwhile but large project for the future. We would also love to illustrate numerically the
various inheritance properties associated with AREs. However, the estimation of the distances to
unstabilzability and undetectability or stability radius is difficult or expensive to realize [19, 24, 28,
30, 31, 33, 34, 44, 45], especially for large-scale problems. Similar studies of inheritance properties
for other types of Riccati equations and related linear matrix equations are also possible.

5.1 Applicability of Inheritance Properties

As in most numerical methods, solvability conditions can be difficult or expensive to check. This is
also the case for the inheritance properties for projection methods in Section 2.2. This makes some
theories somewhat academic, almost impractical. Also, most authors utilize rk in their theories on
projection methods yet it is well known (e.g., from [26] and the examples in Section 4.2) that ‖rk‖
may not diminish quickly for moderate values of k. This creates certain amount of difficulties,
theoretical and numerical, for projection methods. There seem to be four possibilities:

1. The Arnoldi residual rk deteriorates in norm with respect to k, thus the conditions τ(A,B) >
‖x̌>1 rk‖ and τ(A>, C>) > ‖rky̌2‖ for the inheritance properties in Theorems 2.2 and 2.3 are
satisfied, hopefully, for some large enough values of k. This provides a theoretical foundation,
alas with conditions unchecked, for the corresponding projection methods.

2. The Arnoldi residual rk stagnates or persists to be significant in norm with respect to k but
still satisfies the conditions of the inheritance properties. Users of the projection methods
will not be aware of the solvability of the pCAREs without expensive checks.

3. The Arnoldi residual rk stagnates but ‖Rk‖ = ‖Ykrk‖, the norm of the residual for the
approximate solution Xk = P1YkP

>
1 , converges to zero quickly. Because of the results in

[48] and Sections 2 and 3, the projection method produces an accurate approximate solution
Xk. In particular, Theorem 2.5, independent of rk, may be adequate for most applications.
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4. The quantity ‖rk‖ stagnates and ‖Rk‖ remains large until very large values of k, rendering
the corresponding projection method infeasible. This may be the fault of an inappropriate
Krylov subspace or the solution X is numerically high rank (e.g., when H is high rank). Slow
progress in numerical computations should reveal the difficulty and users have to choose
better Krylov subspaces or investigate the problem at hand more carefully.

As always, there are aspects on which our understanding is shallow and more research has to
be conducted. Still, it is arguably better to have an incomplete theory, in the first step in a
long search, than no theory at all. We are far from a thorough understanding of the inheritance
properties for projection methods.
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[21] s. güttel and l. knizhnerman, Automated parameter selection for rational Arnoldi ap-
proximation of Markov functions, Proc. Appl. Math. Mech., 11 (2011) 15–18.

[22] c. he and g.a. watson, An algorithm for computing the distance to instability, SIAM J.
Matrix Anal. Appl., 20 (1998) 101–116.

[23] m. heyouni and k. jbilou, An extended block Arnoldi algorithm for large-scale solutions
of the continuous-time algebraic Riccati equations, Elect. Trans. Numer. Anal., 33 (2009)
53–62.



22 L. Zhang, H.-Y. Fan and E.K.-W. Chu

[24] g. hu and f.j. davison, Real controllability/stabilizability radius of LTI systems, IEEE
Trans. Automat. Control, 49 (2004) 254–257.

[25] imtek, A Semi-discretized Heat Transfer Problem for Optimal Cooling of Steel
Profiles (38881), IMTEK – Simulation, University of Freiburg, 2017; available in
https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/

Steel%20Profiles%20%2838881%29

[26] k. jbilou, Block Krylov subspace methods for large continuous-time algebraic Riccati equa-
tions, Numer. Algor., 34 (2003) 339–353.

[27] k. jbilou, An Arnoldi based algorithm for large algebraic Riccati equations, Appl. Math.
Lett., 19 (2006) 437–444.

[28] f. kangal, k. meerbergen, e. mengi and w. michiels, A subspace method for large
scale eigenvalue optimization, arXiv:1508.0421v2[mathNA], 2015.

[29] c. kenney, a.j. laub and m. wette, Error bounds for Newton refinement of solutions to
algebraic Riccati equations, Math. Control Signals Syst., 3 (1990) 211-224.

[30] c. kenney and a. laub, Controllability and stability radii for companion form systems,
Math. Control Signals Syst., 1 (1988) 239–256.

[31] d.c. khanh, h.t. quyen and d.d.x. thanh, On computing stabilizability radii of linear
time-invariant continuous systems, Elect. Trans. Numer. Anal., 40 (2013) 407–413.

[32] d. kleinman, On an iterative technique for Riccati equation computations, IEEE Trans.
Automat. Control, 13 (1968) 114–115.

[33] d. kressner, Deflation in Krylov subspace methods and distance to uncontrollability,
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