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The structure of a standing plane shock wave in a polyatomic gas is investigated on the basis of
kinetic theory, with special interest in gases with large bulk viscosities, such as the CO2 gas. The
ellipsoidal statistical model for a polyatomic gas is employed. First, the shock structure is computed
numerically for various upstream Mach numbers and for various (large) values of the ratio of the
bulk viscosity to the shear viscosity, and different types of profiles, such as the double-layer structure
consisting of a thin upstream layer with a steep change and a much thicker downstream layer with a
mild change, are obtained. Then, an asymptotic analysis for large values of the ratio is carried out,
and an analytical solution that describes the different types of profiles obtained by the numerical
analysis, such as the double-layer structure, correctly is obtained.

PACS numbers: 05.20.Dd, 47.45.Ab, 47.40.-x, 51.10.+y

I. INTRODUCTION

A shock wave is described as a discontinuous surface, across which the density, the velocity
normal to the surface, and the temperature of a gas exhibit jumps, in inviscid gas dynamics.
In reality, however, the shock wave has a structure, that is, physical quantities undergo steep
but continuous changes across a thin layer of thickness of a few mean free paths. To describe
such a structure, one has to use, in principle, kinetic theory of gases instead of ordinary gas
dynamics.

The structure of a standing plane shock wave is one of the most fundamental problems in
kinetic theory and has been investigated by many authors experimentally, e.g., [1–3], theoreti-
cally [4, 5], and numerically, e.g., [6, 7] (see also, e.g., [8–13]). In the present study, we consider
this classical problem with special interest in polyatomic gases with large bulk viscosities, such
as the carbon dioxide (CO2) gas.

Recently, the shock-structure problem was investigated for polyatomic gases on the basis
of extended thermodynamics [14–16], and some interesting results were obtained. In [14],
relatively weak shock waves were considered, and it was shown that for the CO2 gas, macroscopic
quantities exhibit profiles of three different types (Types A, B, and C in [14–16]) depending
on the upstream Mach number, as shown by the schematic density profile in Fig. 1. When
the Mach number is very close to 1, i.e., the shock wave is very weak, the profiles of the
density, velocity, and temperature are almost symmetric with respect to the centers of the
respective profiles (Type A). When the Mach number is increased slightly, the profiles become
nonsymmetric and exhibit a corner upstream (Type B; the corner is not a real corner but is
almost a corner). If the Mach number is increased slightly more, one obtains profiles with a
double-layer structure, consisting of a thin front layer with a steep change and a thick rear layer
over which the quantities slowly approach the downstream equilibrium values (Type C). In the
present paper, we borrow the notation Type A, Type B, and Type C from [14]. The Type-C
profiles have been obtained also for higher Mach numbers (M− = 1.3, 3, and 5, where M− is
the Mach number at upstream infinity) on the basis of the nonlinear extended thermodynamics
[16]. The existence of the Type-C profiles had been known for a long time [17–19]. The reader
is referred to Introduction in [14, 16] and references therein. However, to the best of the present
authors’ knowledge, [14, 16] provide the first results based on a unified macroscopic theory
using a single equation for both the thin and thick layers.

In [16], the authors make some effort to validate the nonlinear extended thermodynamics for
polyatomic rarefied gases in strong nonequilibrium conditions. In addition, the macroscopic
equation (with 14 macroscopic variables) used in [14], which was derived by the extended
thermodynamics in [20], is shown to be obtained [21] also from the Boltzmann equation, with
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FIG. 1: Schematic figure of the profiles of Type A, Type B, and Type C. The figure is a reproduction
of Fig. 1 in [14] (with the courtesy of S. Taniguchi).

a modeling of the internal modes by a single continuous variable [22], by a moment closure.
Nevertheless, it would be important and interesting to confirm the results of [14, 16] directly
from kinetic theory. As mentioned in Introduction in [14, 16], however, it is not an easy task
because of the extreme complexity of the collision integral of the Boltzmann equation for a
polyatomic gas. This obliges us to introduce phenomenological models at some point in the
theory or numerical analysis. Nevertheless, it is still an interesting problem to see whether
Type-A, Type-B, and Type-C solutions appear or not for the CO2 gas on the basis of kinetic
theory. This was the motivation of our preliminary note [23].

In [23], we adopted, as the basic equation, the polyatomic version of the ellipsoidal statistical
(ES) model [24], which was proposed in [25] and was rederived in a systematic way in [26] (note
that it is different from the model for a polyatomic gas proposed in [24]). This model has a
simple structure that the internal degrees of freedom are expressed by an additional (continuous)
energy variable associated with the internal modes. Although it is simple, it satisfies the basic
properties of the Boltzmann equation for a polyatomic gas [25], such as the conservation laws
and the H-theorem [27].

It is known that the ratio of the bulk viscosity µb to the viscosity µ is quite large for the CO2

gas and is of the order of 1000 [28, 29]. This large value of the ratio µb/µ causes a large shock
thickness, which gives a computational difficulty, in particular, for Type-C profiles, since a very
large computational domain as well as a fine grid system inside the thin front layer is required.
For this reason, in our previous paper [23], we considered an artificial CO2 gas with a smaller
values of the ratio µb/µ (≤ 100), which was called a pseudo-CO2 gas. It was shown that the
pseudo-CO2 gases with increasing ratio µb/µ tended to reproduce the double-layer structure
(Type C) well.

The present study is a continuation and extension of [23]. First, we carry out an accurate
numerical computation based on the same ES model for the pseudo-CO2 gases with larger
values of the ratio µb/µ up to the real CO2 gas with µb/µ being of the order of 1000 and
show that the solutions corresponding to Type-A, Type-B, and Type-C profiles are obtained.
Then, we derive a set of macroscopic equations that describes the thick rear layer in Type-C
profile (with the help of an appropriate jump condition corresponding to the thin front layer),
as well as entire Type-A and Type-B profiles, by an asymptotic analysis for large µb/µ under
a slowly-varying assumption. It should be mentioned that the shock-structure problem for a
polyatomic gas has been studied in a recent paper [30] using essentially the same macroscopic
equations (with 6 macroscopic variables), which were obtained by different approaches, that is,
by the extended thermodynamics [31] and by a moment closure based on kinetic theory [31, 32].
Mention should also be made of a recent paper [33] that has investigated a shock structure for
the CO2 gas using the Navier–Stokes equations with accurate CO2 physical properties.

The paper is organized as follows. After this introduction in Sec. I, the problem and assump-
tions are described in Sec. II, and the problem is formulated both in dimensional and dimen-
sionless forms in Sec. III. Section IV is devoted to the description of the numerical method and
the result of the numerical analysis. In Sec. V, the asymptotic analysis for large µb/µ is carried
out to derive the set of macroscopic equations, and its solution is compared with the numerical
solution. Section VI contains short concluding remarks. In addition, we summarize the basic
properties of the ES model in Appendix A and provide some materials supplementary to the
numerical analysis in Appendix B and to the asymptotic analysis in Appendix C.
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II. PROBLEM AND ASSUMPTIONS

Let us consider a stationary plane shock wave standing in a flow of an ideal polyatomic gas.
We take the X1 axis of the coordinate system (X1, X2, X3) perpendicular to the shock wave.
The gas at upstream infinity (X1 → −∞) is in an equilibrium state with density ρ−, flow
velocity v− = (v−, 0, 0), and temperature T−, and that at downstream infinity (X1 → ∞) is
in another equilibrium state with density ρ+, flow velocity v+ = (v+, 0, 0), and temperature
T+. We investigate the steady behavior of the gas under the following assumptions:

(i) The behavior of the gas is described by the ellipsoidal statistical (ES) model of the Boltz-
mann equation for a polyatomic gas [25, 26].

(ii) The problem is spatially one dimensional, so that the physical quantities are independent
of X2 and X3.

Let us denote by γ the ratio of the specific heats, that is, γ = cp/cv, where cp and cv are the
specific heat at constant pressure and that at constant volume, respectively. In this paper, we
assume that cp, cv, and thus γ are constant (calorically perfect gas; it is also called polytropic
gas in the literature). Then, γ is expressed in terms of the internal degrees of freedom δ of a
molecule as

γ = (δ + 5)/(δ + 3), (1)

where δ can be any positive real number (not restricted to an integer). We denote by M− the

Mach number of the flow at upstream infinity, i.e., M− = v−/
√
γRT−, where R is the gas

constant per unit mass (R = k/m with the Boltzmann constant k and the mass of a molecule
m). Then, the Rankine–Hugoniot relations give the following expressions of the downstream
quantities ρ+, v+, and T+ in terms of the upstream quantities ρ−, v−, and T− and the upstream
Mach number M− (see Appendix A 2):

ρ+ =
(γ + 1)M2

−
(γ − 1)M2

− + 2
ρ−, (2a)

v+ =
(γ − 1)M2

− + 2

(γ + 1)M2
−

v−, (2b)

T+ =
[2γM2

− − (γ − 1)][(γ − 1)M2
− + 2]

(γ + 1)2M2
−

T−. (2c)

Incidentally, the Mach number of the flow at downstream infinity M+, i.e., M+ = v+/
√
γRT+,

is given as

M+ =

[
(γ − 1)M2

− + 2

2γM2
− − (γ − 1)

]1/2
. (3)

III. FORMULATION OF THE PROBLEM

A. Basic equations

Let us consider a polyatomic gas with internal degrees of freedom δ. Let t be the time
variable, X (or Xi) the position vector in the physical space, ξ (or ξi) the molecular velocity,
and E the energy associated with the internal modes. We denote the number of the gas molecules
contained in an infinitesimal volume dXdξdE around a point (X, ξ, E) in the seven-dimensional
space consisting of X, ξ, and E at time t by

1

m
f(t, X, ξ, E)dXdξdE . (4)

We call f(t, X, ξ, E) the velocity/energy distribution function of the gas molecules. It is gov-
erned by the ES model of the Boltzmann equation for a polyatomic gas [25, 26]. In the present
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time-independent and spatially one-dimensional case, where f = f(X1, ξ, E), the equation is
written in the following form:

ξ1
∂f

∂X1
= Q(f), (5)

where

Q(f) = Ac(T )ρ(G − f), (6a)

G =
ρEδ/2−1

(2π)3/2[det(T)]1/2(RTrel)δ/2Γ(δ/2)
exp

(
−1

2
(ξi − vi)(T

−1)ij(ξj − vj)−
E

RTrel

)
, (6b)

(T)ij = (1− θ)[(1− ν)RTtrδij + νpij/ρ] + θRTδij , (6c)

ρ =

∫∫ ∞

0

fdEdξ, (6d)

vi =
1

ρ

∫∫ ∞

0

ξifdEdξ, (6e)

pij =

∫∫ ∞

0

(ξi − vi)(ξj − vj)fdEdξ, (6f)

Ttr =
1

3ρR

∫∫ ∞

0

|ξ − v|2fdEdξ, (6g)

Tint =
2

δρR

∫∫ ∞

0

EfdEdξ, (6h)

T =
3Ttr + δTint

3 + δ
, (6i)

Trel = θT + (1− θ)Tint. (6j)

Here, ρ is the density, v (or vi) = (v1, 0, 0) the flow velocity, pij the stress tensor, Ttr the
temperature associated with translational motion, Tint the temperature associated with the
energy of the internal modes, T the temperature, dξ = dξ1dξ2dξ3, and the domain of integration
with respect to ξ is the whole space of ξ. The symbol δij indicates the Kronecker delta, and
ν ∈ [−1/2, 1) and θ ∈ (0, 1] are the constants that adjust the Prandtl number and the bulk
viscosity. In addition, Ac(T ) is a function of T such that Ac(T )ρ is the collision frequency of
the gas molecules, Γ(z) is the gamma function defined by

Γ(z) =

∫ ∞

0

sz−1e−sds, (7)

T is the 3× 3 positive-definite symmetric matrix whose (i, j) component is defined by Eq. (6c),
and det(T) and T−1 are, respectively, its determinant and inverse. Here and in what follows,

we basically use the summation convention, i.e., aibi =
∑3

i=1 aibi, aicijbj =
∑3

i,j=1 aicijbj , etc.
The pressure p and the heat-flow vector qi are given by

p = RρT, (8)

qi =

∫∫ ∞

0

(ξi − vi)

(
1

2
|ξ − v|2 + E

)
fdEdξ, (9)

where Eq. (8) is the equation of state. It should be noted that in [25], the variable I, which is
related to our E as E = I2/δ, is used as an independent variable instead of E . See Appendix A
in [34] for the relation between the notation in [25] and that of the present paper.

The vanishing of the collision term Q(f) = 0 is equivalent to the fact that f is the following
local equilibrium distribution:

feq =
ρEδ/2−1

(2πRT )3/2(RT )δ/2Γ(δ/2)
exp

(
−|ξ − v|2

2RT
− E

RT

)
. (10)
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In addition, for an arbitrary function g(t, X, ξ, E), the following relation holds (see Appendix
A): ∫∫ ∞

0

φrQ(g)dEdξ = 0, (11)

where φr (r = 0, ..., 4) are the collision invariants, i.e.,

φ0 = 1, φi = ξi (i = 1, 2, 3), φ4 =
1

2
|ξ|2 + E . (12)

It should also be mentioned that for Eq. (5), the viscosity µ, the thermal conductivity κ, the
Prandtl number Pr, and the bulk viscosity µb are obtained as

µ =
1

1− ν + θν

RT

Ac(T )
, κ =

γR

γ − 1

RT

Ac(T )
, Pr =

1

1− ν + θν
, µb =

1

θ

(
5

3
− γ

)
µ

Pr
. (13)

The boundary condition at upstream infinity and that at downstream infinity are given as
follows:

f =
ρ−Eδ/2−1

(2πRT−)3/2(RT−)δ/2Γ(δ/2)
exp

(
− (ξ1 − v−)

2 + ξ22 + ξ23
2RT−

− E
RT−

)
, (X1 → −∞),

(14a)

f =
ρ+Eδ/2−1

(2πRT+)3/2(RT+)δ/2Γ(δ/2)
exp

(
− (ξ1 − v+)

2 + ξ22 + ξ23
2RT+

− E
RT+

)
, (X1 → ∞).

(14b)

We investigate the shock-wave structure on the basis of the system, Eqs. (5), (6), and (14),
with special interest in the case of large µb/µ. When µb/µ = ∞ (i.e., θ = 0), the Rankine–
Hugoniot relations take a different form, which is derived in Appendix A3 [Eq. (A20)]. This
plays an important role in the present study.

B. Dimensionless system

In this subsection we introduce dimensionless variables and present our basic system in di-

mensionless form. Let us introduce the dimensionless quantities [xi, ζi, Ê , f̂ , Ĝ, Âc(T̂ ), ρ̂, v̂i,

p̂ij , T̂tr, T̂int, T̂ , T̂rel, p̂, q̂i], which correspond to the original dimensional quantities [Xi, ξi, E ,
f , G, Ac(T ), ρ, vi, pij , Ttr, Tint, T , Trel, p, qi], by the following relations:

xi = Xi/l−, ζi = ξi/(2RT−)
1/2, Ê = E/RT−,

(f̂ , Ĝ) = (f, G)/2ρ−(2RT−)
−5/2, Âc(T̂ ) = Ac(T )/Ac(T−),

ρ̂ = ρ/ρ−, v̂i = vi/(2RT−)
1/2, p̂ij = pij/p−,

(T̂tr, T̂int, T̂ , T̂rel) = (Ttr, Tint, T, Trel)/T−,

p̂ = p/p−, q̂i = qi/p−(2RT−)
1/2,

(15)

where p− = Rρ−T−, and l− = (2/
√
π)(2RT−)

1/2/Ac(T−)ρ− is the mean free path of the gas
molecules in the equilibrium state at rest with density ρ− and temperature T−. We occasionally
use the bold-faced letters x, ζ, v̂, and q̂ for xi, ζi, v̂i, and q̂i, respectively.

Using these dimensionless quantities, we obtain the following dimensionless form of the ES
model (5):

ζ1
∂f̂

∂x1
=

2√
π
Q̂(f̂), (16)

where

Q̂(f̂) = Âc(T̂ )ρ̂(Ĝ − f̂), (17a)
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Ĝ =
ρ̂

π3/2[det(T̂)]1/2 T̂
δ/2
rel Γ(δ/2)

Êδ/2−1 exp

(
−(ζi − v̂i)(T̂

−1)ij(ζj − v̂j)−
Ê
T̂rel

)
, (17b)

(T̂)ij = (1− θ)[(1− ν)T̂trδij + νp̂ij/ρ̂] + θT̂ δij , (17c)

ρ̂ =

∫∫ ∞

0

f̂dÊdζ, (17d)

v̂i =
1

ρ̂

∫∫ ∞

0

ζif̂dÊdζ, (17e)

p̂ij = 2

∫∫ ∞

0

(ζi − v̂i)(ζj − v̂j)f̂dÊdζ, (17f)

T̂tr =
2

3ρ̂

∫∫ ∞

0

|ζ − v̂|2f̂dÊdζ, (17g)

T̂int =
2

δρ̂

∫∫ ∞

0

Ê f̂dÊdζ, (17h)

T̂ =
3T̂tr + δT̂int

3 + δ
, (17i)

T̂rel = θT̂ + (1− θ)T̂int. (17j)

Here, dζ = dζ1dζ2dζ3, and the domain of integration with respect to ζ is the whole space of ζ.
The (dimensionless) pressure p̂ and heat-flow vector q̂i are given by

p̂ = ρ̂T̂ , (18)

q̂i =

∫∫ ∞

0

(ζi − v̂i)(|ζ − v̂|2 + Ê)f̂dÊdζ. (19)

Corresponding to the statement including Eq. (10), Q̂(f̂) = 0 is equivalent to the fact that f̂
is the dimensionless local equilibrium distribution given by

f̂eq =
ρ̂Êδ/2−1

(πT̂ )3/2T̂ δ/2Γ(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê

T̂

)
. (20)

In addition, the dimensionless version of the statement containing Eqs. (11) and (12) reads as

follows: For an arbitrary function ĝ(t̂, x, ζ, Ê), the relation∫∫ ∞

0

φ̂rQ̂(ĝ)dÊdζ = 0 (21)

holds, where φ̂r (r = 0, ..., 4) are the dimensionless collision invariants, i.e.,

φ̂0 = 1, φ̂i = ζi (i = 1, 2, 3), φ̂4 = |ζ|2 + Ê . (22)

The boundary conditions (14) are non-dimensionalized as follows:

f̂ =
Êδ/2−1

π3/2Γ(δ/2)
exp

(
−[(ζ1 − v̂−)

2 + ζ22 + ζ23 ]− Ê
)
, (x1 → −∞), (23a)

f̂ =
ρ̂+Êδ/2−1

(πT̂+)3/2T̂
δ/2
+ Γ(δ/2)

exp

(
− (ζ1 − v̂+)

2 + ζ22 + ζ23

T̂+

− Ê
T̂+

)
, (x1 → ∞), (23b)

where

v̂− =
v−

(2RT−)1/2
=

√
γ

2
M−, v̂+ =

v+
(2RT−)1/2

=

√
γ

2

(γ − 1)M2
− + 2

(γ + 1)M−
, (24a)

ρ̂+ =
ρ+
ρ−

=
(γ + 1)M2

−
(γ − 1)M2

− + 2
, T̂+ =

T+

T−
=

[2γM2
− − (γ − 1)][(γ − 1)M2

− + 2]

(γ + 1)2M2
−

. (24b)
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We will investigate Eqs. (16) and (23) numerically in Sec. IV and analytically in Sec. V. To
analyze the system, we first specify the internal degrees of freedom δ or the ratio of the specific
heats γ [cf. Eq. (1)] for the gas under consideration, and then determine the functional form of
Ac(T ) and the values of ν and θ on the basis of the transport coefficients (13).

From the conservation laws (see Appendix A 2), the following relations hold for any x1:

ρ̂v̂1 = v̂−, p̂11 + 2ρ̂v̂21 = 1 + 2v̂2−, p̂12 = p̂13 = 0, (25a)

q̂1 + p̂11v̂1 + v̂1

(
3 + δ

2
p̂+ ρ̂v̂21

)
= v̂−

(
5 + δ

2
+ v̂2−

)
. (25b)

These relations can be used for the accuracy tests in the numerical analysis.
When µb/µ = ∞, the Rankine–Hugoniot relation is given by Eq. (A20), which is different

from Eq. (2). For later convenience, we introduce the dimensionless density ρ̂∗∗, flow velocity

v̂∗∗, and translational temperature T̂∗∗ at the downstream condition of the Rankine–Hugoniot
relations for µb/µ = ∞. That is, because Ttr− = Tint− = T− holds in the present problem,
Eq. (A20) gives the following expression of them:

ρ̂∗∗ =
ρ+
ρ−

=
4M̃2

−

M̃2
− + 3

, v̂∗∗ =
v+√
2RT−

=

√
5

6

M̃2
− + 3

4M̃−
, (26a)

T̂∗∗ =
Ttr+

T−
=

(5M̃2
− − 1)(M̃2

− + 3)

16M̃2
−

, (26b)

where

M̃− =
v−√

5RT−/3
. (27)

IV. NUMERICAL ANALYSIS

A. Preliminaries

Since we are considering the case where v̂2 = v̂3 = 0, we can assume that the velocity/energy

distribution function f̂ is cylindrically symmetric with respect to ζ1 in the ζ space, that is,

f̂ = f̂(x1, ζ1, ζρ, Ê), ζρ = (ζ22 + ζ23 )
1/2. (28)

This form makes some components of p̂ij , q̂i, and thus (T̂)ij trivial in addition to v̂2 = v̂3 = 0,
i.e.,

p̂12 = p̂13 = p̂23 = 0, q̂2 = q̂3 = 0, (T̂)12 = (T̂)13 = (T̂)23 = 0. (29)

Then, we introduce the following marginal velocity distribution functions:

ϕ1(x1, ζ1) = 2π

∫ ∞

0

∫ ∞

0

ζρf̂(x1, ζ1, ζρ, Ê)dÊdζρ, (30a)

ϕ2(x1, ζ1) = 2π

∫ ∞

0

∫ ∞

0

ζ3ρ f̂(x1, ζ1, ζρ, Ê)dÊdζρ, (30b)

ϕ3(x1, ζ1) = 2π

∫ ∞

0

∫ ∞

0

ζρÊ f̂(x1, ζ1, ζρ, Ê)dÊdζρ. (30c)

If we multiply Eq. (16) with Eq. (28) by 2π(ζρ, ζ
3
ρ , ζρÊ), integrate the resulting equations from

0 to ∞ with respect to ζρ and Ê , and rewrite the macroscopic quantities in Eq. (17) in terms
of ϕ1, ϕ2, and ϕ3, then we obtain the following system of equations for ϕ1, ϕ2, and ϕ3.

ζ1
∂ϕk

∂x1
=

2√
π
Âc(T̂ )ρ̂(Ψk − ϕk), (k = 1, 2, 3), (31)
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where  Ψ1

Ψ2

Ψ3

 =
ρ̂

√
π (T̂)

1/2
11

 1

(T̂)22
(δ/2)T̂rel

 exp

(
− (ζ1 − v̂1)

2

(T̂)11

)
, (32a)

(T̂)11 = (1− θ)[(1− ν)T̂tr + νp̂11/ρ̂] + θT̂ , (32b)

(T̂)22[= (T̂)33] = (1− θ)
[
(1− ν)T̂tr + νp̂22/ρ̂

]
+ θT̂ , (32c)

ρ̂ =

∫ ∞

−∞
ϕ1dζ1, v̂1 =

1

ρ̂

∫ ∞

−∞
ζ1ϕ1dζ1, (32d)

p̂11 = 2

∫ ∞

−∞
(ζ1 − v̂1)

2ϕ1dζ1, p̂22 [= p̂33] =

∫ ∞

−∞
ϕ2dζ1, (32e)

T̂tr =
2

3ρ̂

∫ ∞

−∞
[(ζ1 − v̂1)

2ϕ1 + ϕ2]dζ1, T̂int =
2

δρ̂

∫ ∞

−∞
ϕ3dζ1, (32f)

T̂ =
3T̂tr + δT̂int

3 + δ
, T̂rel = θT̂ + (1− θ)T̂int. (32g)

The boundary conditions for Eq. (31) can be obtained from Eq. (23) by the same procedure.
The result is as follows: ϕ1

ϕ2

ϕ3

 =
1

π1/2

 1
1
δ/2

 exp
(
−(ζ1 − v̂−)

2
)
, (x1 → −∞), (33a)

 ϕ1

ϕ2

ϕ3

 =
ρ̂+

(πT̂+)1/2

 1

T̂+

(δ/2)T̂+

 exp

(
− (ζ1 − v̂+)

2

T̂+

)
, (x1 → ∞). (33b)

We will analyze Eqs. (31), (32), and (33) numerically. It should be noted that the molecular

velocity components ζ2 and ζ3 and the energy variable Ê have been eliminated in Eqs. (31),
(32), and (33), so that we need to handle only two independent variables x1 and ζ1.

Finally, we note that the (dimensionless) heat-flow is expressed as

q̂1 =

∫ ∞

−∞
(ζ1 − v̂1)[(ζ1 − v̂1)

2ϕ1 + ϕ2 + ϕ3]dζ1. (34)

B. Grid system and finite-different scheme

We limit the range of x1 to a finite range −Dn ≤ x1 ≤ Dp with sufficiently large positive
constants Dn and Dp (Dn < Dp) and set the grid points x(i) (i = −Nn, −Nn+1, ..., 0, ..., Np−
1, Np; Nn < Np) in such a way that x(−Nn) = −Dn, x(0) = 0, and x(Np) = Dp. We also limit
the range of the molecular velocity ζ1 to a finite range −Zn ≤ ζ1 ≤ Zp with large positive
constants Zn and Zp and set the grid points ζ(j) (j = 0, 1, 2, ..., 2M − 1, 2M) as ζ(0) = −Zn

and ζ(2M) = Zp. The grid systems used for the computation are summarized in Appendix B 1.
Then, we denote the values of ϕk and Ψk (k = 1, 2, 3) and those of the macroscopic quantities

at the grid points at the nth step of iteration by

ϕ
[n,i,j]
k = ϕk(x(i), ζ(j)) at the nth iteration, (k = 1, 2, 3), (35a)

Ψ
[n,i,j]
k = Ψk(x(i), ζ(j)) at the nth iteration, (k = 1, 2, 3), (35b)

h[n,i] = h(x(i)) at the nth iteration, (35c)

where h = ρ̂, v̂1, p̂11, p̂22, ....
We adopt the following finite-difference scheme for Eq. (31):

ζ(j)∇ϕ
[n+1,i,j]
k = B[n,i]

(
Ψ

[n,i,j]
k − ϕ

[n+1,i,j]
k

)
, (36)
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where

B[n,i] =
2√
π
Âc(T̂

[n,i])ρ̂[n,i], (37)

and ∇ϕ
[n,i,j]
k indicates the second-order upwind difference for ∂ϕk/∂x1 defined as follows:

(i) for ζ(j) > 0,

∇ϕ
[n,i,j]
k =


(
ϕ
[n,−Nn+1,j]
k − ϕ

[n,−Nn,j]
k

)
/d−Nn+1, (i = −Nn + 1),

w0(di, di−1)ϕ
[n,i,j]
k − w1(di, di−1)ϕ

[n,i−1,j]
k

+w2(di, di−1)ϕ
[n,i−2,j]
k , (−Nn + 2 ≤ i ≤ Np),

(38a)

(ii) for ζ(j) < 0,

∇ϕ
[n,i,j]
k =


(
−ϕ

[n,Np−1,j]
k + ϕ

[n,Np,j]
k

)
/dNp , (i = Np − 1),

−w0(di+1, di+2)ϕ
[n,i,j]
k + w1(di+1, di+2)ϕ

[n,i+1,j]
k

−w2(di+1, di+2)ϕ
[n,i+2,j]
k , (−Nn ≤ i ≤ Np − 2).

(38b)

Here,

di = x(i) − x(i−1),

w0(a, b) =
2a+ b

a(a+ b)
, w1(a, b) =

a+ b

ab
, w2(a, b) =

a

b(a+ b)
.

If we express ∇ϕ
[n,i,j]
k as

∇ϕ
[n,i,j]
k =

{
α+
i,0ϕ

[n,i,j]
k + α+

i,1ϕ
[n,i−1,j]
k + α+

i,2ϕ
[n,i−2,j]
k , for ζ(j) > 0,

α−
i,0ϕ

[n,i,j]
k + α−

i,1ϕ
[n,i+1,j]
k + α−

i,2ϕ
[n,i+2,j]
k , for ζ(j) < 0,

(39)

then, the finite-difference scheme can be written as

(B[n,i] + ζ(j)α
±
i,0)ϕ

[n+1,i,j]
k = B[n,i]Ψ

[n,i,j]
k − ζ(j)

(
α±
i,1ϕ

[n+1,i∓1,j]
k + α±

i,2ϕ
[n+1,i∓2,j]
k

)
. (40)

C. Process of numerical computation

If we assume that the initial state is a local equilibrium, p̂11 = p̂22 and T̂tr = T̂int = p̂11/ρ̂
hold. We first choose an appropriate initial density distribution ρ̂[0,i]. Then, we determine the
initial distributions of v̂1, p̂11, p̂22, T̂tr, and T̂int using the above relations and the conservation
of mass and momentum, Eq. (25a), as follows:

v̂
[0,i]
1 = v̂−/ρ̂

[0,i], p̂
[0,i]
11 = p̂

[0,i]
22 = 1 + 2v̂−(v̂− − v̂

[0,i]
1 ),

T̂
[0,i]
tr = T̂

[0,i]
int = p̂

[0,i]
11 /ρ̂[0,i].

(41)

Suppose that the macroscopic quantities h[n,i] (h = ρ̂, v̂1, p̂11, p̂22, T̂tr, T̂int) are known at
all the grid points x(i). Then, the physical quantities at the (n+ 1)th step are obtained by the
following process.

(i) Obtain B[n,i] and Ψ
[n,i,j]
k (k = 1, 2, 3) at each grid point x(i) and ζ(j).

(ii) For each j for which ζ(j) > 0, obtain ϕ
[n+1,−Nn,j]
k (k = 1, 2, 3) using the boundary condi-

tion at upstream infinity and then ϕ
[n+1,i,j]
k using the finite-difference scheme successively

for i = −Nn + 1, −Nn + 2, ..., Np.

(iii) For each j for which ζ(j) < 0, obtain ϕ
[n+1,Np,j]
k (k = 1, 2, 3) using the boundary condition

at downstream infinity and then ϕ
[n+1,i,j]
k using the finite-difference scheme successively

for i = Np − 1, Np − 2, ..., −Nn.
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(iv) For j for which ζ(j) = 0, let ϕ
[n+1,i,j]
k = Ψ

[n,i,j]
k (k = 1, 2, 3).

(v) Obtain the macroscopic quantities h[n+1,i] at each grid point x(i) by integrating the ob-

tained ϕ
[n+1,i,j]
k numerically (using the Simpson rule).

We repeat the above process until the solution converges.

D. Results of numerical analysis

1. Parameter setting

We first explain our parameter setting. In the following, we set the upstream temperature
T− as 293K. If we consider upstream Mach numbers M− = 1.2 to 5, then, the downstream
temperature T+ becomes 331K to 1699K for δ = 2 (γ = 7/5), 321K to 1313K for δ = 4
(γ = 9/7), and 315K to 1092K for δ = 6 (γ = 11/9). We consider this temperature range.

In the present paper, we concentrate on the CO2 gas and present the result only for it though
the computation has also been performed for the N2 gas. According to the data about cp and γ
given in [35–38], γ is not constant but depends on the temperature. Therefore, if we are based
on the relation (1), δ should depend on the temperature. From the data in [35–38] and Eq. (1),
we find that δ ≈ 4 at 300K, 5 at 400K, 6 at 550K, 7 at 700K, and 8 at 1000K. Since the ES
model that we are using has a constant δ, the computation will be performed with a fixed value
δ = 4 that corresponds to the upstream temperature. We may also set the values of δ according
to the downstream temperature. In order to see the effect of different setting of δ, we will also
carry out some computations for other values of δ.

The data of the viscosity µ and the thermal conductivity κ of the CO2 gas from [35–39] agree
reasonably well, so that we take [35] as our reference. If we try to fit the data of µ and κ in
[35] with the least square method assuming the power-law dependence on the temperature, we
have

µ(T ) = µ(293K)× (T/293K)0.84, κ(T ) = κ(293K)× (T/293K)1.2. (42)

However, since the ES model gives a common temperature dependence for µ and κ [cf. Eq. (13)],
we cannot take into account the different power shown in Eq. (42). Therefore, we make an
intermediate choice µ, κ ∝ T , i.e., Ac(T ) ∝ T 0, which is reasonably good for T ≲ 400K, except
in the last part of Sec. IVD2 where the comparison with [14] is made.

According to [35], the Prandtl number Pr decreases monotonically with the temperature:
Pr = 0.761 (293K), 0.745 (373K), 0.735 (473K), and 0.720 (973K). Since Pr of the ES model
is independent of the temperature, we basically fix Pr as Pr = 0.761. This looks reasonable
because the variation of Pr with the temperature is not large. According to [28, 29], the ratio
of the bulk viscosity µb to the viscosity µ is large: µb/µ ≈ 103 to 2 × 103 ([28], 293K) and
µb/µ = 3922 ([29], 296.3K). According to [29], µb/µ decreases rapidly as the temperature
increases. From Fig. 13 in [29], we obtain the following values: µb/µ ≈ 2400 at 400K, 1000 at
600K, 600 at 800K, 400 at 1000K, and 200 at 1300K. In the present computation, we vary µb/µ
from 100 to 2000. It should be mentioned that the effect of the bulk viscosity on nonequilibrium
CO2 gas flows has been studied in [40].

In summary, we assume basically that δ = 4 (γ = 9/7), Ac(T ) = const, Pr = 0.761, and
µb/µ = 100 to 2000 (the computation is also carried out for 10 ≤ µb/µ < 100, but the result
will not be shown in the present paper). The parameters ν and θ are chosen accordingly
[cf. Eq. (13)]. In the present paper we call the gas with these properties the pseudo-CO2 gas
and regard it as the real CO2 gas when µb/µ = 1000 to 2000.

2. Numerical results

We show the results for pseudo-CO2 gas with large µb/µ including the real CO2 gas (i.e.,
pseudo-CO2 gas with µb/µ = 1000 to 2000). In the following, we show the profiles of the density
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Ť

(b)
x1

ρ̌
,
v̌
,
Ť

FIG. 2: Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100, 200,
500, 1000, and 2000. (a) Profiles for −200 ≤ x1 ≤ 3600, (b) profiles for −20 ≤ x1 ≤ 100. The red
curves indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for
µb/µ = 100, the dashed lines for µb/µ = 200, the dot-dashed lines for µb/µ = 500, the dot-dot-dashed
lines for µb/µ = 1000, and the dotted lines for µb/µ = 2000. In panel (b), the black dotted lines
indicate the profiles of ρ̌, v̌, and Ť for µb/µ = ∞.
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Ť
in
t
,
Ť

FIG. 3: Profiles of Ťtr, Ťint, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100,
200, 500, 1000, and 2000. (a) Profiles for −200 ≤ x1 ≤ 3600, (b) profiles for −20 ≤ x1 ≤ 100. The red
curves indicate Ťtr, the green curves Ťint, and the blue curves Ť . See the caption of Fig. 2 about the
types of lines. In panel (b), the black dotted lines indicate the profiles of Ťtr, Ťint, and Ť for µb/µ = ∞.

ρ, the flow velocity v1 (the X1 component), and the temperatures T , Ttr, and Tint normalized
in the conventional way, that is,

ρ̌ =
ρ− ρ−
ρ+ − ρ−

, v̌ =
v1 − v+
v− − v+

, Ť =
T − T−

T+ − T−
, Ťtr =

Ttr − T−

T+ − T−
, Ťint =

Tint − T−

T+ − T−
. (43)

We start with M− = 5 and decrease M− down to M− = 1.05.

• Case of M− = 5

Figure 2 shows the profiles of ρ̌, v̌, and Ť at M− = 5 for pseudo-CO2 gases with µb/µ = 100,
200, 500, 1000, and 2000. Figure 2(b) is a magnified figure of Fig. 2(a) in the range −20 ≤
x1 (= X1/l−) ≤ 100. The red curves indicate ρ̌, the green curves v̌, and the blue curves Ť ; the
solid lines indicate µb/µ = 100, the dashed lines µb/µ = 200, the dot-dashed lines µb/µ = 500,
the dot-dot-dashed lines µb/µ = 1000, and the dotted lines µb/µ = 2000. In Fig. 2(b), we
also show by the black dotted lines the profiles of ρ̌, v̌, and Ť when µb/µ = ∞. Note that in
this case the downstream condition is different from that for finite µb/µ and is given by the
Rankine–Hugoniot relations for µb/µ = ∞ [Eq. (A20) (note that Ttr− = T− in the present
problem) or (26)]. In this figure and the following Figs. 3–6, x1 = 0 is set at the position where
the density is equal to the average of the upstream and downstream values when µb/µ = ∞,
that is, ρ̂ = (1+ ρ̂∗∗)/2 [cf. Eq. (26a)]. The profiles are of Type C consisting of a thin front layer
and a thick rear layer. As µb/µ increases, the thickness of the rear layer increases and reaches
over 3000 mean free paths (l−), whereas the profiles of the thin front layer are not affected by
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FIG. 5: Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100,
200, 500, 1000, and 2000 in the new coordinate y1. (a) Profiles for −0.2 ≤ y1 ≤ 1, (b) profiles for
−0.06 ≤ y1 ≤ 0.06. The red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . See the
caption of Fig. 2 about the types of lines.

µb/µ and coincide with the shock profiles for µb/µ = ∞. This indicates that the thin front
layer corresponds to the shock wave for µb/µ = ∞, and the jump caused by this layer is given
by the Rankine–Hugoniot relations for µb/µ = ∞. For any large but finite value of µb/µ, ρ̌ and
Ť approach 1, and v̌ approaches 0 as x1 → ∞. However, for any fixed x1, the values of ρ̌, v̌,
and Ť approach, as µb/µ → ∞, the respective values corresponding to the downstream state of
the shock wave for µb/µ = ∞.

Figure 3 shows the profiles of Ťtr, Ťint, and Ť corresponding to Fig. 2. Here, the red curves
indicate Ťtr, the green curves Ťint, and the blue curves Ť . As in Fig. 2(b), the black dotted lines
indicate the profiles of Ťtr, Ťint, and Ť for µb/µ = ∞. The thin front layer gives a significant
overshoot of Ťtr. Figure 4 shows the profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1. The q̂1 is non-zero
only in the thin front layer and is not affected by µb/µ, and p̌11 = p̌22 holds almost whole range
of the thick rear layer.

Here, we introduce the new space coordinate y1 whose length scale of variation is l−/θ, i.e.,

y1 = (2/
√
π)θx1 = (2/

√
π)θ(X1/l−), (44)

which is expected to describe the slow variation occurring in the thick rear layer when µb/µ ≫ 1
(θ ≪ 1). In Fig. 5, we show the profiles of ρ̌, v̌, and Ť , corresponding to Fig. 2, as the functions
of y1. Figure 5(b) is a magnified figure of Fig. 5(a). As one can see, the curves for µb/µ = 100,
200, 500, 1000, and 2000 coincide perfectly in the thick rear layer. Using this new coordinate
y1, we will derive a set of macroscopic equations that can describe the slow relaxation over the
thick rear layer in Sec. V.
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and 8. (a) Profiles for −100 ≤ x1 ≤ 1800, (b) profiles for −14 ≤ x1 ≤ 20. The red curves indicate ρ̌,
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FIG. 7: Profiles of ρ̌, v̌, and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100, 200,
500, 1000, and 2000. (a) Profiles for −1000 ≤ x1 ≤ 24000, (b) profiles for −100 ≤ x1 ≤ 2000. The red
curves indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for
µb/µ = 100, the dashed lines for µb/µ = 200, the dot-dashed lines for µb/µ = 500, the dot-dot-dashed
lines for µb/µ = 1000, and the dotted lines for µb/µ = 2000. In panel (b), the black dotted lines
indicate the profiles of ρ̌, v̌, and Ť for µb/µ = ∞.

Figure 6 shows the effect of the internal degrees of freedom δ in the case of M− = 5 and
µb/µ = 1000. The figure corresponds to Fig. 2, and the red, green, and blue curves indicate
ρ̌, v̌, and Ť , respectively. In the figure, the solid lines indicate δ = 3, the dashed lines δ = 4,
the dot-dashed lines δ = 5, and the dot-dot-dashed lines δ = 8. The difference in δ changes the
profile of ρ̌ significantly.

• Case of M− = 1.2

In Figs. 7–11, we show the profiles for a smaller upstream Mach number M− = 1.2. Figures
7–11 correspond to Figs. 2–6, respectively. In these figures, x1 = 0 is set in the same way
as Figs. 2–6. The profile of the density is close to that of the temperature, and the values of
p̂11 − p̂, p̂22 − p̂, and −q̂1 are small. These profiles are also of Type C. However, the jumps due
to the thin front layer is smaller compared with the case of M− = 5. For µb/µ = 2000, the
thick rear layer extends over 20000 mean free paths.

• Case of M− = 1.138 . . .

This case corresponds to M̃− = 1, where M̃− = v−/
√
5RT−/3 is a parameter playing the

role of the upstream Mach number in the Rankine–Hugoniot relations for µb/µ = ∞ [Eq. (A20)
with Ttr− = T− or (26)]. Figure 12 shows the profiles of ρ̌, v̌, and Ť , and Fig. 13 those of Ťtr

and Ťint. Figures 12(b) and 13(b) are, respectively, the magnified figures of Figs. 12(a) and
13(a). In the figures, x1 = 0 is set at the position where ρ̌ = 0.05 (i.e., ρ̂ = 0.95+0.05ρ̂+). The
profiles do not show the double layer structure, but the thickness of the shock increases as µb/µ
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Ť
t
r
,
Ť
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200, 500, 1000, and 2000. (a) Profiles for −1000 ≤ x1 ≤ 24000, (b) profiles for −100 ≤ x1 ≤ 2000.
The red curves indicate Ťtr, the green curves Ťint, and the blue curves Ť . See the caption of Fig. 7
about the types of lines. In panel (b), the black dotted lines indicate the profiles of Ťtr, Ťint, and Ť for
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See the caption of Fig. 7 about the types of lines. In panel (b), the black dotted lines indicate the
profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 for µb/µ = ∞.

becomes large, as in the case of M− = 5 and 1.2. Except Ťint, the profiles start abruptly from
the upstream uniform state though the approach of the profiles to the downstream uniform
state is slow and smooth. Therefore, the profiles except Ťint are not symmetric with respect
to the centers of the respective profiles, and we can say that the profiles in this case are of
Type B. As we will see in Sec. VA, the leading-order asymptotic solution for large µb/µ (the
slowly-varying solution) gives the profiles that start suddenly from the upstream uniform state

and thus exhibit a corner when M̃− = 1. This is the reason why we chose the case M̃− = 1 as
a typical Type-B profile.

• Case of M− = 1.05

Finally, we show the profiles of ρ̌, v̌, and Ť for M− = 1.05 in Fig. 14. Figure 14(b) is a
magnified figure of Fig. 14(a). In the figure, x1 = 0 is set at the position where ρ̌ = 1/2
[i.e., ρ̂ = (1 + ρ̂+)/2]. The profiles, which are almost symmetric with respect to the centers of
respective profiles, correspond to Type-A profile. The thickness of the shock increases with the
increase of µb/µ and reaches over 50000 mean free paths for µb/µ = 2000.

In this way, the transition of the profiles from Type A to Type C at Mach numbers rather
close to 1, which was predicted by the extended thermodynamics [14], is also observed in the
present computation based on the ES model. The data for the numerical analysis, such as the
numbers of the grid points and the accuracy tests, are given in Appendices B 2 and B3.
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FIG. 10: Profiles of ρ̌, v̌, and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100,
200, 500, 1000, and 2000 in the new coordinate y1. (a) Profiles for −0.5 ≤ y1 ≤ 8, (b) profiles for
−0.12 ≤ y1 ≤ 0.2. The red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . See the
caption of Fig. 7 about the types of lines.
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FIG. 11: Profiles of ρ̌, v̌, and Ť at M− = 1.2 for Pr = 0.761, Ac = const, µb/µ = 1000, and δ = 3, 4,
and 5. (a) Profiles for −1000 ≤ x1 ≤ 12000, (b) profiles for −60 ≤ x1 ≤ 240. The red curves indicate
ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for δ = 3, the dashed
lines for δ = 4, and the dot-dashed lines for δ = 5.

In the rest of this subsection, we compare our result with that of [14]. Here, we reset the
parameters according to this reference. In [14], cp, cv, and thus γ are functions of T (thermally
perfect gas), whereas in the present ES model, they do not depend on T (calorically perfect
gas). Therefore, it is not possible to make a perfect comparison. Nevertheless, we will try the
best comparison. In [14], the (shear) viscosity µ, the bulk viscosity µb (ν in [14]), and the
thermal conductivity κ are expressed as [Eq. (7) in [14]]

µ = pτS , µb =

(
2

3
− R

cv

)
pτΠ, κ =

(
1 +

cv
R

)
Rpτq, (45)

where τΠ, τS , and τq are the relaxation times for the dynamic pressure, the shear stress, and
the heat flux, respectively. It is also assumed that µ ∝ Tn, µb ∝ Tn, and κ ∝ Tncv(T )/R
[Eq. (14) in [14]]. Assuming that γ(T ) = const = γ0 in Eq. (15) in [14], we obtain

τΠ = τΠ(ρ0, T0)
ρ0
ρ

(
T0

T

)1−n

, τS = τS(ρ0, T0)
ρ0
ρ

(
T0

T

)1−n

, τq = τq(ρ0, T0)
ρ0
ρ

(
T0

T

)1−n

.

(46)

Then, we have the following relations:

δ =
2cv
R

− 3, Pr =
τS(ρ0, T0)

τq(ρ0, T0)
,

µb

µ
=

(
2

3
− R

cv

)
τΠ(ρ0, T0)

τS(ρ0, T0)
. (47)

In [14], the following values are used: cv/R = 3.45, τS(ρ0, T0) = 1.6 × 10−9 sec, τq(ρ0, T0) =
2.2 × 10−9 sec, and τΠ(ρ0, T0) = 2.2 × 10−5 sec, so that we have δ = 3.9, Pr = 0.73, and
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FIG. 12: Profiles of ρ̌, v̌, and Ť at M− = 1.138 . . . (M̃− = 1) for δ = 4, Pr = 0.761, Ac = const,
and µb/µ = 100, 200, 500, 1000, and 2000. (a) Profiles for −2000 ≤ x1 ≤ 28000, (b) profiles for
−1000 ≤ x1 ≤ 4000. The red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid
lines indicate the profiles for µb/µ = 100, the dashed lines for µb/µ = 200, the dot-dashed lines for
µb/µ = 500, the dot-dot-dashed lines for µb/µ = 1000, and the dotted lines for µb/µ = 2000.
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FIG. 13: Profiles of Ťtr and Ťint at M− = 1.138 . . . (M̃− = 1) for δ = 4, Pr = 0.761, Ac = const,
and µb/µ = 100, 200, 500, 1000, and 2000. (a) Profiles for −2000 ≤ x1 ≤ 28000, (b) profiles for
−1000 ≤ x1 ≤ 4000. The red curves indicate Ťtr, and the green curves Ťint. See the caption of Fig. 12
about the types of lines.

µb/µ = 5.2×103. This leads to the following values of the parameters ν and θ in the ES model:
ν = −0.3698... and θ = 9.926...× 10−5. In addition, since n = 0.935 is assumed in [14], we let

Âc = T̂ 0.065. The comparison is made with this parameter setting.
Figure 15 shows the comparison between Fig. 6 in [14] and the present computation for

M− = 1.47. Only the profiles of ρ̂, v̂1 (v̂ in the figure), and T̂ are compared. These figures are
taken from Fig. 6 in [14], where the black solid lines indicate the result based on the extended
thermodynamics, the dashed lines that based on the Navier–Stokes Fourier theory, and the
circles in the profile of ρ̂ the experimental result in [19] (see the caption of Fig. 6 in [14]). Our
results are overdrawn by colored lines. Here, x̂ is the coordinate used in [14], which is related
to our x1 as follows:

x̂ = x1

(
8

π

δ + 3

δ + 5

)1/2
τq
τΠ

= x1

(
8

π

δ + 3

δ + 5

)1/2

θ. (48)

That is, x̂ has the same length scale as y1 introduced in Eq. (44). In the magnified figures,
we have shifted our results slightly to make two results coincide. The figures show very good
agreement between the results based on the extended thermodynamics and our results except
that there is a very slight difference in the downstream uniform state. This is due to the fact
that when γ depends on T , the downstream conditions are not the same as those given by the
Rankine–Hugoniot relations (2).
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FIG. 14: Profiles of ρ̌, v̌, and Ť at M− = 1.05 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100, 200,
500, 1000, and 2000. (a) Profiles for −40000 ≤ x1 ≤ 60000, (b) profiles for −10000 ≤ x1 ≤ 10000. The
red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for
µb/µ = 100, the dashed lines for µb/µ = 200, the dot-dashed lines for µb/µ = 500, the dot-dot-dashed
lines for µb/µ = 1000, and the dotted lines for µb/µ = 2000.

V. ASYMPTOTIC ANALYSIS FOR LARGE µb/µ

A. Slowly-varying solution and shock profile

The numerical results in Sec. IVD suggest that the thick layer behind the thin layer of Type-
C profile for large µb/µ (i.e., small θ) may be described by a slowly-varying solution whose
length scale of variation is of the order 1/θ. Although the results are not shown in Sec. IVD,
the replot of the curves in Figs. 12–14 in terms of the variable y1 [Eq. (44)] shows that the
profiles of each macroscopic quantity for large µb/µ fall on a single curve for respective M−, as
the profiles of the thick rear layer in Figs. 5(a) and 10(a). Therefore, we expect that the slowly-
varying solution may also describe the whole profiles of Types A and B. In order to obtain the
slowly-varying solution, we need to introduce the new space coordinates yi contracted by the
small parameter θ, i.e.,

yi =
2√
π
θxi. (49)

If we assume that f = f(y1, ζ, Ê), then Eq. (16) becomes

θζ1
∂f̂

∂y1
= Âc(T̂ )ρ̂(Ĝ − f̂). (50)

We analyze this equation for θ ≪ 1 by a Hilbert-type expansion in θ, i.e.,

f̂ = f̂ (0) + f̂ (1)θ + f̂ (2)θ2 + · · · . (51)

Correspondingly, the macroscopic quantities ρ̂, v̂i, p̂ij , ..., which we denote by ĥ, are expanded
as

ĥ = ĥ(0) + ĥ(1)θ + ĥ(2)θ2 + · · · . (52)

We leave the details of the analysis in Appendix C, where the three-dimensional version of
Eq. (50) [Eq. (C2)] is analyzed. As the result of the analysis, the macroscopic equations that

describe the leading-order quantities ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int of the expansion Eq. (52) are

obtained, i.e., Eqs. (C34a) and (C34b) and two equations out of Eqs. (C34c), (C40), and (C45).

Let us consider the one-dimensional case assuming that ∂/∂y2 = ∂/∂y3 = 0 and v̂
(0)
2 = v̂

(0)
3 =

0 and omit the superscript (0) for brevity. If we choose Eqs. (C34) and (C45) as the governing
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FIG. 15: Comparison between the profiles in [14] and those in the present computation at M− = 1.47.
The figure is a reproduction of a part of Fig. 6 in [14] (with the courtesy of S. Taniguchi): The solid
lines indicate the result based on the extended thermodynamics, the dashed lines that based on the
Navier–Stokes Fourier theory, and the circles in the profile of ρ̂ the experimental result in [19] (see the
caption of Fig. 6 in [14]). The present result is overdrawn by colored lines: The red line is for ρ̂, the

green line for v̂1 (denoted by v̂ in the figure according to [14]), and the blue line for T̂ .

equations, these equations reduce to the following system:

d

dy1
(ρ̂v̂1) = 0, (53a)

d

dy1

(
T̂tr

v̂1
+ 2v̂1

)
= 0, (53b)

d

dy1

(
v̂21 +

5

2
T̂tr +

δ

2
T̂int

)
= 0, (53c)

v̂1
dT̂int

dy1
=

3

3 + δ
Âc(T̂ )ρ̂

(
T̂tr − T̂int

)
, (53d)

where the relation (C41), i.e.,

T̂ =
3T̂tr + δT̂int

3 + δ
, (54)

has been used except that T̂ is still kept in Âc(T̂ ). We note here that (ρ̂, v̂1, T̂tr, T̂int) are equal

to (1, v̂−, 1, 1) at upstream infinity and to (ρ̂+, v̂+, T̂+, T̂+) at downstream infinity, and they
are related by the dimensionless Rankine–Hugoniot relations (24) or the original conservation
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laws

ρ̂+v̂+ = v̂−,
T̂+

v̂+
+ 2v̂+ =

1

v̂−
+ 2v̂−, v̂2+ +

5 + δ

2
T̂+ = v̂2− +

5 + δ

2
, (55)

which are the dimensionless version of Eq. (A11).
It follows from Eqs. (53a)–(53c) that

ρ̂v̂1 = c1,
T̂tr

v̂1
+ 2v̂1 = c2, v̂21 +

5

2
T̂tr +

δ

2
T̂int = c3, (56)

where c1, c2, and c3 are constants, or

ρ̂ =
c1
v̂1

, T̂tr = v̂1 (c2 − 2v̂1) , T̂int =
2

δ

(
c3 −

5

2
c2v̂1 + 4v̂21

)
. (57)

The substitution of Eq. (57) into Eq. (53d) with Eq. (54) gives the following equation for v̂1:

v̂21(
5

16
c2 − v̂1)

dv̂1
dy1

=
3(4 + δ)

8(3 + δ)
c1Âc(T̂ )

[
v̂21 −

5 + δ

2(4 + δ)
c2v̂1 +

c3
4 + δ

]
, (58a)

T̂ =
2

3 + δ

(
v̂21 − c2v̂1 + c3

)
. (58b)

In the case of the Type-C profile, the slowly-varying solution should be applied to the down-
stream of the thin front layer, so that c1, c2, and c3 in Eq. (56) are determined from the

downstream condition as c1 = ρ̂+v̂+, c2 = (T̂+/v̂+) + 2v̂+, and c3 = v̂2+ + [(5 + δ)/2]T̂+. How-
ever, these downstream quantities are expressed in terms of the upstream quantities by Eq. (55).
Therefore, we can express c1, c2, and c3 using the upstream quantities as

c1 = v̂−, c2 =
1

v̂−
+ 2v̂−, c3 = v̂2− +

5 + δ

2
. (59)

Using these relations and the ratio of specific heats γ = (5 + δ)/(3 + δ), we can transform
Eq. (58) as follows:

v̂21 (v̂∗ − v̂1)
dv̂1
dy1

= −3(γ + 1)

16
v̂−Âc(T̂ ) (v̂− − v̂1) (v̂1 − v̂+) , (60a)

T̂ (v̂1) = 1 + (γ − 1) (v̂1 − v̂−)

(
v̂1 −

1 + v̂2−
v̂−

)
, (60b)

where v̂∗ and v̂+ (downstream velocity) are expressed in terms of v̂− as

v̂∗ =
5

16

1 + 2v̂2−
v̂−

, v̂+ =
(γ − 1)v̂2− + γ

(γ + 1)v̂−
. (61)

Let us consider the integration of Eq. (60), with an initial condition v̂1 = v̂0 at y1 = y0, from
y1 = y0 to ∞. When v̂1 < v̂∗ and v̂1 ∈ (v̂+, v̂−) (note that v̂+ < v̂−), dv̂1/dy1 is negative from
Eq. (60). This range of v̂1 is not empty because v̂+ < v̂∗ for γ < 5/3 and M− > 1. This can be
shown easily from the relation

v̂∗
v̂+

=
5

16
(γ + 1)

2v̂2− + 1

(γ − 1)v̂2− + γ
=

5

8

γ + 1

γ

γM2
− + 1

(γ − 1)M2
− + 2

. (62)

Therefore, if the initial value v̂0 satisfies v̂0 < v̂∗ and v̂0 ∈ (v̂+, v̂−), the solution v̂1 monoton-
ically decreases as y1 increases and approaches v̂+, which is an equilibrium point of v̂1 where
dv̂1/dy1 vanishes. This means that, with an appropriate choice of the initial value v̂0, the solu-
tion of Eq. (60) is expected to describe the velocity profile in the downstream range y1 ∈ [y0, ∞)
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of a shock wave. Once the solution v̂1 is obtained from Eq. (60), other quantities are obtained
from Eq. (57). That is,

ρ̂(v̂1) =
v̂−
v̂1

, T̂tr(v̂1) = 1 + 2 (v̂− − v̂1)

(
v̂1 −

1

2v̂−

)
, (63a)

T̂int(v̂1) = 1 +
8

δ
(v̂1 − v̂−) (v̂1 − v̂∗∗) , (63b)

where v̂∗∗ is the dimensionless downstream velocity of the shock wave when θ = 0, which is
defined by Eq. (26a) and is written in terms of v̂− as v̂∗∗ = (2v̂2− +5)/8v̂−. Equation (60) with
the initial condition v̂1(y0) = v̂0 can be solved analytically. More specifically, v̂1 is obtained as
the inverse function of the following function y1(v̂1):

y1(v̂1)− y0 =
16

3(γ + 1)v̂−

∫ v̂0

v̂1

u2 (v̂∗ − u)

Âc(T̂ (u)) (v̂− − u) (u− v̂+)
du. (64)

Moreover, the integration can be carried out explicitly for special forms of Âc(T̂ ), such as

Âc(T̂ ) = 1,
√
T̂ , and T̂ . The results are given in Appendix D.

Finally, we discuss the possible choices of the initial value v̂0 and the relation between the
resulting solution v̂1 [and Eq. (63)] and the profiles of Type A, Type B, and Type C. Here, we

note that M̃− < M− holds (see the end of Appendix A3).

(i) Case of M̃− < 1 < M−:

Since M̃− =
√

6/5v̂−, it follows from Eq. (61) that v̂− < v̂∗. Therefore, the admissible
range of the initial value v̂0, i.e., v̂0 < v̂∗ and v̂0 ∈ (v̂+, v̂−), reduces to just v̂0 ∈ (v̂+, v̂−).
That is, we can take v̂0 as almost v̂−, i.e., v̂0 = v̂− − 0. Therefore, the solution v̂1
is expected to describe the whole profile of the velocity. Let us consider this point in
more detail. We consider Eq. (64) for a fixed value of v̂1 in the middle of the profile,
v̂+ < v̂1 < v̂−. Then, we have the following estimate:

y1(v̂1)− y0 > Cy(v̂1)

∫ v̂0

v̂1

1

v̂− − u
du = Cy(v̂1)[− ln(v̂− − v̂0) + ln(v̂− − v̂1)], (65)

where

Cy(v̂1) =
16

3(γ + 1)v̂−

v̂21(v̂∗ − v̂0)

maxv̂1≤u≤v̂0 [Âc(T̂ (u))] (v̂0 − v̂+)
> 0. (66)

As the initial value v̂0 approaches the upstream velocity v̂−, the coordinate y1(v̂1), which
expresses the coordinate y1 inside the shock profile, diverges to +∞. To locate the
shock profile in a more comfortable range with finite y1, we need to shift the coordinate,
or take the initial position y0 as −∞. Theoretically, if we assume that v̂0 → v̂− at
y1 → −∞, we obtain the whole profile of v̂1, changing from v̂− to v̂+, in a range of

finite y1. Correspondingly, ρ̂ changes from ρ̂(v̂−) = 1 to ρ̂(v̂+) = ρ̂+, T̂tr changes from

T̂tr(v̂−) = 1 to T̂tr(v̂+) = T̂+, and T̂int changes from T̂int(v̂−) = 1 to T̂int(v̂+) = T̂+. This
solution corresponds to the whole profile of Type A.

(ii) Case of M̃− = 1:

In this case, it follows from Eq. (61) that v̂∗ = v̂− =
√

5/6. Therefore, the admissible
range of the initial value v̂0 is still v̂0 ∈ (v̂+, v̂−). However, Eq. (64) reduces to

y1(v̂1)− y0 =
16

3(γ + 1)v̂−

∫ v̂0

v̂1

u2

Âc(T̂ (u)) (u− v̂+)
du. (67)

Since the integrand does not have a singularity at u = v̂−, the integral takes a finite value
at v̂0 = v̂− for a fixed value of v̂1 in the middle of the profile, v̂+ < v̂1 < v̂−. This means
that y0 can be a finite value, say y0 = 0, and the velocity profile locates in a range with
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finite y1. Therefore, the solution v̂1 can describe the whole velocity profile v̂− → v̂+ in
the range y1 ∈ [y0, ∞). From Eq. (60), we observe that

dv̂1
dy1

∣∣∣∣
y1=y0

= −3(γ + 1)

16
Âc(1)

v̂− − v̂+
v̂−

< 0. (68)

This means that the profile of the velocity suddenly start at y1 = y0 with a finite gradient
and approaches v̂+ as y1 → ∞. In other words, the velocity profile exhibits a corner at
y1 = y0. From Eq. (63a), it follows that

dρ̂

dy1

∣∣∣∣
y1=y0

= − 1

v̂−

dv̂1
dy1

∣∣∣∣
y1=y0

> 0,
dT̂tr

dy1

∣∣∣∣∣
y1=y0

= −2

(
v̂− − 1

2v̂−

)
dv̂1
dy1

∣∣∣∣
y1=y0

> 0.

(69)

Therefore, profiles of ρ̂ and T̂tr show the same behavior. However, from Eq. (63b), we
have

dT̂int

dy1

∣∣∣∣∣
y1=y0

=
8

δ
(v̂− − v̂∗∗)

dv̂1
dy1

∣∣∣∣
y1=y0

= 0, (70)

because v̂∗∗ = v̂− =
√
5/6 [Eq. (26a)]. Therefore, the profile of T̂int does not exhibit a

corner at y1 = y0. These results are consistent with the numerical solution in Sec. IVD2
(see Sec. VB). This solution corresponds to the Type-B profile.

(iii) Case of M̃− > 1:

Because v̂∗ < v̂− in this case, the admissible range for the initial value reduces to v̂0 ∈
(v̂+, v̂∗). Here, we should note that v̂+ < v̂∗∗ < v̂∗ holds. Therefore, we can take v̂∗∗,
which is the dimensionless downstream velocity of the shock wave when θ = 0 [Eq. (26a)],
as the initial value v̂0. Then, the solution v̂1 describes the monotonic decrease from
v̂∗∗ to v̂+ as y1 varies from y0 to ∞. Correspondingly, ρ̂ changes from ρ̂(v̂∗∗) = ρ̂∗∗ to

ρ̂(v̂+) = ρ̂+, T̂tr changes from T̂tr(v̂∗∗) = T̂∗∗ to T̂tr(v̂+) = T̂+, and T̂int changes from

T̂int(v̂∗∗) = 1 to T̂int(v̂+) = T̂+, where ρ̂∗∗ and T̂∗∗ are, respectively, the values of ρ̂ and

T̂tr downstream of the shock wave with θ = 0 [Eq. (26)]. This corresponds to the thick
rear layer of the Type-C profile. To be more specific, we replace the thin front layer with
a jump satisfying the Rankine–Hugoniot relations for θ = 0 and the thick layer with the
solution corresponding to v̂1 obtained here. In this way, we can describe the Type-C
profile by the slowly-varying solution.

In summary, the slowly-varying solution, i.e., v̂1 obtained from Eq. (64) and the corresponding

ρ̂, T̂tr, and T̂int in Eq. (63), can successfully describe the Type-A profile when M̃− < 1 < M−, the

Type-B profile when M̃− = 1, and the Type-C profile, with the help of the Rankine–Hugoniot

relations for θ = 0 [Eq. (26) or (A20) with T̂tr− = T̂−], when M̃− > 1.
In [30], the shock-wave structure of a polyatomic gas is investigated by a set of macroscopic

equations that is derived by the extended thermodynamics [31] or from the Boltzmann equation
by an appropriate moment closure [31, 32] (see also [30]). In this Boltzmann equation, the
internal modes are modeled by a single continuous variable [22] as in the ES model used here.
The macroscopic equations expressed in terms of the slowly-varying variable y1 in Eq. (44)
are essentially the same as our equations (53). It should also be mentioned that a system of
macroscopic equations corresponding to a slowly-varying kinetic solution has been obtained to
describe the structure of a shock wave in a gas mixture with slow chemical reactions in [41],
where the profiles are classified according to the parameters.

B. Comparison with numerical results

In this subsection, we compare the slowly-varying solution with the numerical solutions.
The pseudo-CO2 gas with µb/µ = 100 and 1000 gives θ = 5.00... × 10−3 and 5.00... × 10−4,
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FIG. 16: Comparison between the profiles based on the slowly-varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100 are
shown in the figure. (a) Profiles for −40 ≤ x1 ≤ 200, (b) profiles for −20 ≤ x1 ≤ 60. The red line
indicates ρ̌, the green line v̌, and the blue line Ť of the numerical solution. The black dot-dashed line
indicates the corresponding profiles obtained on the basis of the slowly-varying solution. In panel (b),
the numerical solution of the ES model for µb/µ = ∞ is also shown by the black dashed line.
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FIG. 17: Comparison between the profiles based on the slowly-varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100
are shown in the figure. (a) Profiles for −100 ≤ x1 ≤ 1200, (b) profiles for −40 ≤ x1 ≤ 200. See the
caption of Fig. 16.

respectively, which are quite small. Therefore, we expect from its derivation that the leading-
order slowly-varying solution obtained in Sec. VA describes the shock profile accurately. To
confirm this statement, we consider the case of µb/µ = 100, for which the leading-order solution
should be less accurate than the case of µb/µ = 1000, and make some comparisons. In Figs. 16–
19 below, x1 = 0 is set in the same way as in Figs. 2, 7, 12, and 14, respectively, for the numerical
solution. Then, the profiles obtained by the slowly-varying solution is shifted in such a way
that the point at which ρ̌ = 0.5 coincides with that of the numerical solution.

Figure 16 shows the profiles of ρ̌, v̌, and Ť at M− = 5 and for µb/µ = 100. Figure 16(b)
is a magnified figure of Fig. 16(a). The colored lines show the numerical solution obtained in
Sec. IVD2: the red line indicates ρ̌, the green line v̌, and the blue line Ť . The black dot-
dashed line indicates the profile of the thick rear layer obtained on the basis of the Rankine–
Hugoniot relations for µb/µ = ∞ [Eq. (A20) with T̂Tr− = T̂−] and the slowly-varying solution

corresponding to Eq. (64) in the case of M̃− > 1 (see Sec. VA). In Fig. 16(b), the numerical
result for µb/µ = ∞ is also shown by the black dashed line. As one can see, the slowly-varying
solution describes perfectly the profiles in the thick rear layer. Figure 17 shows the profiles at
M− = 1.2 and for µb/µ = 100, where the colors and types of the lines are the same as Fig. 16.
In this case, the profiles of the rear layer given by the slowly-varying solution deviates slightly
from the numerical solution. However, we can say that the agreement is still good. Figures 16
and 17 correspond to Type-C profile.

The comparison of the profiles at M− = 1.138... (M̃− = 1) and for µb/µ = 100 is made
in Fig. 18. As in Figs. 16 and 17, Fig. 18(b) is a magnified figure. Note that the scale of v̌
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FIG. 18: Comparison between the profiles based on the slowly-varying solution and those of numerical

solution. Profiles of ρ̌, v̌, and Ť at M− = 1.138... (M̃− = 1) for δ = 4, Pr = 0.761, Ac = const, and
µb/µ = 100 are shown in the figure. (a) Profiles for −200 ≤ x1 ≤ 1800, (b) profiles for −160 ≤ x1 ≤ 160.
The red line indicates ρ̌, the green line v̌, and the blue line Ť of the numerical solution. The black
dot-dashed line indicates the corresponding profiles obtained on the basis of the slowly-varying solution.
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FIG. 19: Comparison between the profiles based on the slowly-varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 1.05 for δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100 are
shown in the figure. (a) Profiles for −2500 ≤ x1 ≤ 3000, (b) profiles for −200 ≤ x1 ≤ 200. See the
caption of Fig. 18.

is shown on the right side in Fig. 18(b). In this case, the slowly-varying solution based on
Eq. (64) gives a profile that starts suddenly with a corner, as shown by the dot-dashed lines in
Fig. 18(b). We may call this case strict Type B. It agrees with the numerical solution on the
whole though there is a visible difference in the magnified figure, Fig. 18(b). The numerical
solution gives profiles that start smoothly without a corner. However, as µb/µ becomes large,
say 1000, the start of the profiles becomes sharper, and the difference between the numerical
and slowly-varying solutions becomes invisible.

Figure 19 shows the comparison of the profiles at M− = 1.05 and for µb/µ = 100. In this
case, the agreement between the numerical and slowly-varying solutions is good even in the
magnified Fig. 19(b). This corresponds to Type-A profile.

In this subsection, we compared the numerical and slowly-varying solutions for the pseudo-
CO2 gas with a smaller µb/µ, i.e., µb/µ = 100, and confirmed the agreement. It should be
emphasized that we have much better agreement for the real CO2 gas with µb/µ of the order
of 1000.

VI. CONCLUDING REMARKS

In the present study, we investigated the structure of a standing shock wave in a polyatomic
gas with a large bulk viscosity on the basis of the polyatomic version of the ES model for the
Boltzmann equation. It is known that the CO2 gas has a large value of the ratio of the bulk
viscosity to the viscosity (µb/µ), which is of the order of 1000. Therefore, we considered a
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pseudo-CO2 gas with the same properties as the CO2 gas except that µb/µ takes arbitrary
values and investigated its behavior as µb/µ increases up to 2000 to understand the properties
of the shock profiles when µb/µ is large. The study was motivated by the recent results based
on the extended thermodynamics [14–16].

We first carried out direct numerical computations of the ES model and obtained the profiles
of the macroscopic quantities inside the shock wave accurately for the pseudo-CO2 gas and the
real CO2 gas, i.e., the pseudo-CO2 gas with the real value of µb/µ (Sec. IV). In this step, we were
able to reproduce the Type-A, Type-B, and Type-C profiles defined in [14] (Fig. 1) at relatively
small upstream Mach numbers (i.e., for small M− − 1) for the CO2 gas. Here, the Type-A
profile is a profile almost symmetric with respect to the center for each macroscopic quantities,
the Type-B profile is the profile that is nonsymmetric and has a corner upstream, and the
Type-C profile is the profile consisting of a thin upstream layer with a sharp change and a thick
downstream layer with a slow change. We obtained the Type-C profile also for higher upstream
Mach numbers, which is consistent with the result in [16] based on the nonlinear extended
thermodynamics. In addition, we observed that as the ratio µb/µ increases, the thin front layer
in the Type-C profile does not change, whereas the thickness of the thick rear layer increases
indefinitely. In the limit when µb/µ → ∞, the shock wave reduces to the thin upstream layer
only and its downstream state approaches a uniform equilibrium state satisfying the different
Rankine–Hugoniot relations [Eq. (A20)] that hold when µb/µ = ∞.

Then, motivated by the numerical results, we tried to describe the behavior of the thick rear
layer of the Type-C profile by a slowly-varying solution of the ES model, the length scale of which
is of the order of µb/µ (or the inverse of the parameter θ appearing in the ES model) (Sec. V).
Carrying out an asymptotic analysis for small θ (or large µb/µ) using a Hilbert-type expansion,
we derived a simple set of ordinary differential equations for the macroscopic quantities, which
can be solved analytically. We showed that the Type-C profile can be described by this slowly-
varying solution correctly if its upstream condition is set to be the downstream condition of the
Rankine–Hugoniot relations for µb/µ = ∞. This is a kind of revival of the Bethe–Teller theory
[17] discussed in [14]. In addition, we showed that the slowly-varying solution can also describe
the entire Type-A and Type-B profiles correctly.

In this study, we assumed that the ratio µb/µ is large (1000 to 2000) for the CO2 gas according
to the literature [28, 29]. However, there are some doubts about it, e.g., [42]. This discrepancy
should be an important subject to be investigated. Nevertheless, the slowly-varying solution
derived here should give a good approximation even if µb/µ is much smaller, say, of the order
of 10, such as the hydrogen gas for which µb/µ ≈ 30 [28, 29].

In the present paper, we have restricted ourselves to the structure of the plane shock wave.
However, the macroscopic equations corresponding to the slowly-varying solution have been
derived for the general three-dimensional case. Therefore, they can be applied easily to the
structure of a curved shock wave in a polyatomic gas with large bulk viscosity.

Finally, we comment on possible extensions of the present work. The present study is fully
based on the ES model, not on the original Boltzmann equation. However, in order to describe
the complicated process of energy exchange during collisions and relaxation processes, one needs
to introduce some phenomenological models [22, 43] even in the Boltzmann equation. Never-
theless, the extension of the present study to such Boltzmann models would be an important
problem to be tackled. Another possible extension is to investigate the shock-wave structure for
a mixture of polyatomic gases (containing CO2) by the use of a Boltzmann-type model (e.g.,
[44]) or a Bhatnager–Gross–Krook (BGK)-type model (e.g, [45]) for polyatomic gas mixtures.
In the present study, we restricted ourselves to a calorically perfect (or polytropic) gas, for
which the specific heat at constant pressure and that at constant volume are constants. The
extension of the present study to a thermally perfect (or non-polytropic) gas with the specific
heats depending on the temperature would also be possible if one uses appropriate existing
models, such as the Boltzmann-type models in [22, 44] and the BGK-type models in [45].
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Appendix A: Some properties of the ES model

1. Moments of Gaussian

We first calculate moments of the Gaussian (6b). Let us consider the following moments:
With i, j = 1, 2, 3,

I0[G] =
∫∫ ∞

0

GdEdξ, (A1a)

Ii[G] =
∫∫ ∞

0

ξiGdEdξ =

∫∫ ∞

0

(ξi − vi)GdEdξ + viI0[G], (A1b)

I4[G] =
∫∫ ∞

0

EGdEdξ, (A1c)

Iij [G] =
∫∫ ∞

0

ξiξjGdEdξ

=

∫∫ ∞

0

(ξi − vi)(ξj − vj)GdEdξ + vjIi[G] + viIj [G]− vivjI0[G]. (A1d)

If we let xi = (ξi − vi)/
√
2 and y = E/RTrel, the Gaussian G [Eq. (6b)] is expressed as

G =
ρyδ/2−1

(2π)3/2[det(T)]1/2RTrelΓ(δ/2)
exp

(
−txT−1x− y

)
. (A2)

In this subsection, bold-faced letters indicate column vectors; for instance, x is the column
vector with components x1, x2, and x3, and

tx is its transpose, i.e., tx = [x1, x2, x3]. Let us
denote the eigenvalues of T−1 by λ(i) (i = 1, 2, 3), where λ(i) > 0 because T is positive definite,
and the orthogonal matrix that diagonalizes T−1 by P, i.e.,

tPT−1P = diag [λ(1), λ(2), λ(3)], (A3)

where diag [ ] indicates a diagonal matrix. Then, we have det(T) = [det(T−1)]−1 =
(λ(1)λ(2)λ(3))−1. If we introduce the column vector c with components c1, c2, and c3 by
x = Pc and another column vector z with components z1 = (λ(1))1/2c1, z2 = (λ(2))1/2c2, and
z3 = (λ(3))1/2c3, then we have

txT−1x = tctPT−1Pc =
3∑

i=1

λ(i)c2i = |z|2. (A4)

Therefore, the Gaussian G and ξi − vi are expressed in the following form:

G =
ρyδ/2−1

(2π)3/2(λ(1)λ(2)λ(3))−1/2RTrelΓ(δ/2)
exp

(
−|z|2 − y

)
, (A5a)

ξi − vi =
√
2xi =

√
2 (P)ijcj =

3∑
j=1

(
2/λ(j)

)1/2
(P)ijzj . (A5b)

Let us change the integration variables from (E , ξ) to (y, z) in Eqs. (A1). Then, the domain
of integration becomes from 0 to ∞ for y and the whole space for z, and the relation dEdξ =
2
√
2RTrel(λ

(1)λ(2)λ(3))−1/2dydz holds, where dz = dz1dz2dz3. Thus, we obtain the following



26

expressions:

I0[G] =
ρ

π3/2Γ(δ/2)

∫∫ ∞

0

yδ/2−1 exp
(
−|z|2 − y

)
dydz = ρ, (A6a)

Ii[G]− viI0[G] =
ρ

π3/2Γ(δ/2)

3∑
j=1

(
2/λ(j)

)1/2
(P)ij

∫∫ ∞

0

yδ/2−1zj exp
(
−|z|2 − y

)
dydz

= 0, (A6b)

I4[G] =
ρRTrel

π3/2Γ(δ/2)

∫∫ ∞

0

yδ/2 exp
(
−|z|2 − y

)
dydz = ρ

δRTrel

2
, (A6c)

Iij [G]− vivjI0[G]

=
2ρ

π3/2Γ(δ/2)

3∑
k,l=1

(P)ik(P)jl
(
λ(k)λ(l)

)−1/2
∫∫ ∞

0

yδ/2−1zkzl exp
(
−|z|2 − y

)
dydz

= ρ

3∑
k,l=1

(P)ik(P)jl
(
λ(k)λ(l)

)−1/2

δkl

= ρ
3∑

k=1

(λ(k))−1(P)ik(P)jk. (A6d)

Taking the inverse of tPT−1P = diag [λ(1), λ(2), λ(3)] and multiplying by P from the left
and by tP from the right, we have T = Pdiag [1/λ(1), 1/λ(2), 1/λ(3)] tP, or (T)ij =∑3

k=1(λ
(k))−1(P)ik(P)jk. Therefore, the last line of Eq. (A6d) becomes ρ (T)ij .

In summary, we have the following expressions of the moments of the Gaussian:

I0[G] = ρ, Ii[G] = ρvi, I4[G] = ρ
δRTrel

2
, (A7a)

Iij [G] = ρ (T)ij + ρvivj , Ikk[G] = 3(1− θ)ρRTtr + 3θρRT + ρv2k, (A7b)

1

2
Ikk[G] + I4[G] =

3 + δ

2
ρRT +

1

2
ρv2k. (A7c)

2. Conservation laws

From Eqs. (6d)–(6j), the following relations hold:

I0[f ] = ρ, Ii[f ] = ρvi, I4[f ] = ρ
δRTint

2
, (A8a)

Iij [f ] = pij + ρvivj , Ikk[f ] = 3ρRTtr + ρv2k, (A8b)

1

2
Ikk[f ] + I4[f ] =

3 + δ

2
ρRT +

1

2
ρv2k. (A8c)

Equations (A7) and (A8) immediately show that Eq. (11) holds and verify the fact thatQ(f) = 0
and f = feq are equivalent [see the paragraph containing Eq. (10)].

Multiplying Eq. (5) by 1, ξi, and ξ2k/2+E and integrating the resulting equations with respect
to E from 0 to ∞ and with respect to ξ over its whole space, we obtain, from Eq. (11), the
following relations:

∂

∂X1

∫∫ ∞

0

ξ1fdEdξ =
∂

∂X1
(ρv1) = 0, (A9a)

∂

∂X1

∫∫ ∞

0

ξ1ξifdEdξ =
∂

∂X1
(p1i + ρv1vi) = 0, (A9b)

∂

∂X1

∫∫ ∞

0

ξ1

(
1

2
ξ2k + E

)
fdEdξ =

∂

∂X1

[
q1 + p1kvk + v1

(
3 + δ

2
p+

1

2
ρv2k

)]
= 0. (A9c)
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That is, we obtain the following conservation laws:

ρv1 = const, p1i + ρv1vi = const, (A10a)

q1 + p1kvk + v1

(
3 + δ

2
p+

1

2
ρv2k

)
= const. (A10b)

If we apply these relations to the equilibrium states at the upstream and downstream infinities,
we have

ρ−v− = ρ+v+, p− + ρ−v
2
− = p+ + ρ+v

2
+, (A11a)

v−

(
5 + δ

2
p− +

1

2
ρ−v

2
−

)
= v+

(
5 + δ

2
p+ +

1

2
ρ+v

2
+

)
, (A11b)

from which the Rankine–Hugoniot relations (2) follow.

3. Case of θ = 0

In the case of θ = 0, i.e., µb/µ = ∞, Eq. (6j) gives Trel = Tint, so that Eqs. (6b) and (6c)
reduce respectively to

G =
ρEδ/2−1

(2π)3/2[det(T)]1/2(RTint)δ/2Γ(δ/2)
exp

(
−1

2
(ξi − vi)(T

−1)ij(ξj − vj)−
E

RTint

)
, (A12a)

(T)ij = (1− ν)RTtrδij + νpij/ρ. (A12b)

In this case, it follows from Eqs. (A7a) and (A8a) that I4[G]− I4[f ] =
∫∫∞

0
E(G − f)dEdξ = 0.

Therefore, the relation (11) is replaced by∫∫ ∞

0

ϕrQ(g)dEdξ = 0, (A13)

where ϕr (r = 0, ..., 5) are the new collision invariants, i.e.,

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 =
1

2
|ξ|2, ϕ5 = E . (A14)

Correspondingly, in place of Eq. (A10), the following four conservation laws hold:

ρv1 = const, p1i + ρv1vi = const, (A15a)

(qtr)1 + p1kvk + v1

(
3

2
ρRTtr +

1

2
ρv2k

)
= const, (A15b)

(qint)1 + v1
δ

2
ρRTint = const, (A15c)

where

(qtr)i =
1

2

∫∫ ∞

0

(ξi − vi)(ξk − vk)
2fdEdξ, (A16a)

(qint)i =

∫∫ ∞

0

(ξi − vi)EfdEdξ. (A16b)

In addition, it is easy to show that the local equilibrium distribution feq is given by

feq =
ρEδ/2−1

(2πRTtr)3/2(RTint)δ/2Γ(δ/2)
exp

(
−|ξ − v|2

2RTtr
− E

RTint

)
, (A17)

instead of Eq. (10).
The form of the local equilibrium distribution in Eq. (A17) indicates that the equilibrium state

at upstream infinity is determined by specifying ρ−, v−, Ttr−, and Tint− and that at downstream
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infinity by specifying ρ+, v+, Ttr+, and Tint+, where Ttr− and Tint− are the translational and
internal temperatures at upstream infinity, and Ttr+ and Tint+ are those at downstream infinity.
That is, we can impose the following conditions at upstream and downstream infinities:

f =
ρ−Eδ/2−1

(2πRTtr−)3/2(RTint−)δ/2Γ(δ/2)
exp

(
− (ξ1 − v−)

2 + ξ22 + ξ23
2RTtr−

− E
RTint−

)
,

(X1 → −∞), (A18a)

f =
ρ+Eδ/2−1

(2πRTtr+)3/2(RTint+)δ/2Γ(δ/2)
exp

(
− (ξ1 − v+)

2 + ξ22 + ξ23
2RTtr+

− E
RTint+

)
,

(X1 → ∞). (A18b)

If we apply Eq. (A15) to upstream and downstream infinities, we have

ρ−v− = ρ+v+, ρ−RTtr− + ρ−v
2
− = ρ+RTtr+ + ρ+v

2
+, (A19a)

v−

(
5

2
ρ−RTtr− +

1

2
ρ−v

2
−

)
= v+

(
5

2
ρ+RTtr+ +

1

2
ρ+v

2
+

)
, (A19b)

v−
δ

2
ρ−RTint− = v+

δ

2
ρ+RTint+. (A19c)

The first and last equations show that Tint− = Tint+. On the other hand, Eqs. (A19a) and
(A19b) are the same as Eqs. (A11a) and (A11b) with δ = 0 (or γ = 5/3) if Ttr is regarded as
the temperature T . Therefore, the Rankine–Hugoniot relations for θ = 0 follow immediately
from Eq. (2), that is,

ρ+ =
4M̃2

−

M̃2
− + 3

ρ−, v+ =
M̃2

− + 3

4M̃2
−

v−, (A20a)

Ttr+ =
(5M̃2

− − 1)(M̃2
− + 3)

16M̃2
−

Ttr−, Tint+ = Tint−, (A20b)

M̃+ =

(
M̃2

− + 3

5M̃2
− − 1

)1/2

, (A20c)

where

M̃∓ =
v∓√

5RTtr∓/3
. (A21)

Here, M̃− plays the role of the upstream Mach number, so that M̃− > 1 if there is a standing

shock. It is noted that when Ttr− = T−, M̃− < M− holds because M̃−/M− =
√
3γ/5 and

γ < 5/3.

Appendix B: Supplementary data for numerical analysis

Since the profiles of Type A, Type B, and Type C are very different, we need different grid
systems depending on the types of the profile. In particular for Type C, use should be made
of a grid system in x1 that concentrates inside the thin front layer and cover the wide range of
the thick rear layer and one in ζ1 that covers the high T̂tr behind the thin front layer. Because
the jump due to the thin front layer corresponds to the jump given by the Rankine–Hugoniot
relations for µb/µ = ∞ (cf. Secs. IVD2 and VA), we need to take into account the information
about the downstream condition of this Rankine–Hugoniot relations in the grid systems. For
this purpose, we use the dimensionless downstream density ρ̂∗∗, velocity v̂∗∗, and temperature
T̂∗∗ defined by Eq. (26).



29

1. Grid systems

For the x1 coordinate, the range of which has been limited to −Dn ≤ x1 ≤ Dp, we use the
grid points x(i) concentrated near x1 = 0 based on functions containing pth power and qth
power of x1, i.e.,

x(i) =
Dn

1 + a

[
i

Nn
+ a

(
i

Nn

)p ]
, x(−i) = −x(i), (i = 0, 1, ..., Nn), (B1a)

x(i) = Dn +
Dp −Dn

1 + b

[
i−Nn

Np −Nn
+ b

(
i−Nn

Np −Nn

)q ]
, (i = Nn + 1, Nn + 2, ..., Np).

(B1b)

This grid system is prepared to capture the Type-C profile composed of a thin front layer with
a sharp change and a thick rear layer with slow relaxation: Eq. (B1a) is for the thin front layer,
and Eq. (B1b) for the thick rear layer. With Eq. (B1), the grid interval di = x(i) − x(i−1)

becomes

d1 ≈ Dn

(1 + a)Nn
, dNn ≈ d1(1 + ap), (B2a)

dNn+1 ≈ Dp −Dn

(1 + b)(Np −Nn)
, dNp ≈ dNn+1(1 + bq). (B2b)

We first choose Dn and Dp (> Dn). For Eq. (B1a), we determine Nn and a based on the
minimum interval d1 and the ratio dNn/d1 [Eq. (B2a)] and choose the growth rate p. For
Eq. (B1b), we determineNp and b based on the condition dNn+1 ≈ dNn and the ratio dNp/dNn+1

[Eq. (B2b)] and choose the growth rate q.
For the molecular velocity ζ1, whose range has been limited to −Zn ≤ ζ1 ≤ Zp, we use the

grid points that are suitable for the bimodal distribution based on the upstream equilibrium
distribution (33a) centered at ζ1 = v̂− and the downstream equilibrium distribution (33b)
centered at ζ1 = v̂+ (< v̂−). More specifically, we use a uniform grid interval for v̂+ ≤ ζ1 ≤ v̂−
and nonuniform grid intervals suitable to describe the half range distribution of Eq. (33a) [or
Eq. (33b)] for v̂− ≤ ζ1 ≤ Zp (or −Zn ≤ ζ1 ≤ v̂+). The explicit expression of the grid points
ζ(j) is as follows:

ζ(j) = v̂+ − ζ∗∗(2Mn−j), (j = 0, 1, · · · , 2Mn), (B3a)

ζ(j) = v̂+ + (v̂− − v̂+)
j − 2Mn

2M0
, (j = 2Mn + 1, · · · , 2Mn + 2M0), (B3b)

ζ(j) = v̂− + ζ∗(j−2Mn−2M0)
, (j = 2Mn + 2M0 + 1, · · · , 2M), (B3c)

where ζ∗(j) and ζ∗∗(j) are auxiliary grid systems defined below. Equation (B3a) with 2Mn + 1

grid points is for −Zn ≤ ζ1 ≤ v̂+, Eq. (B3b) with 2M0 grid points is for v̂+ ≤ ζ1 ≤ v̂−, and
Eq. (B3c) with 2M − 2(Mn +M0) grid points is for v̂− ≤ ζ1 ≤ Zp. The auxiliary system ζ∗(j) is

defined by

ζ∗(j) =
Z

1 + c

[
j

2M̃p

+ c

(
j

2M̃p

)r ]
, (j = 0, 1, · · · , 2M̃p), (B4)

with appropriate constants c, r, Z, and M̃p. This is a grid system for the right half of the
shifted distribution, Eq. (33a) with v̂− = 0, in the limited interval 0 ≤ ζ1 ≤ Z and gives the
grid interval δ∗j = ζ∗(j) − ζ∗(j−1) as follows:

δ∗1 ≈ Z

2(1 + c)M̃p

, δ∗
2M̃p

≈ δ∗1(1 + cr). (B5)

We choose the number of the grid points in Eq. (B3c) [2M − 2(Mn +M0)] larger than that in
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Eq. (B4), i.e., M − (Mn +M0) ≥ M̃p. The auxiliary system ζ∗∗(j) is defined by

ζ∗∗(j) =
Z
√
τ

1 + c

[
j

2Mn
+ c

(
j

2Mn

)r ]
, (j = 0, 1, · · · , 2Mn), (B6a)

τ =

{
max(T̂+, T̂∗∗), (M̃− > 1),

T̂+, (M̃− ≤ 1),
(B6b)

where Mn is chosen to be the minimum integer such that Mn ≥ M̃p
√
τ , and the constants c,

r, and Z are common to ζ∗(j). The T̂∗∗ in Eq. (B6b) is the downstream value of T̂tr for the

shock wave with µb/µ = ∞, and M̃− is the parameter playing the role of the upstream Mach
number for such a shock wave [see Eq. (26b)]. This is basically a grid system for the right half

of the shifted distribution, Eq. (33b) with v̂+ = 0, in the limited interval 0 ≤ ζ1 ≤ Z

√
T̂+.

However, to capture the possible significant overshoot of T̂tr in Type-C profiles, the choice of

τ in Eq. (B6b) is introduced (note that M̃− > 1 corresponds to Type-C profile). This ζ∗∗(j) is

used in Eq. (B3a) after being reflected and shifted. We choose the number of grid points (i.e.,
Mn, M0, and M) in such a way that the minimum and maximum of the grid intervals in ζ∗(j)
are more or less the same as those in ζ∗∗(j) and that the uniform interval for v̂+ ≤ ζ1 ≤ v̂− is

approximately the same as the minimum interval in ζ∗(j) (or ζ
∗∗
(j)).

2. Data for numerical analysis

a. Convergence of iteration

If the computation can be carried out without any error, the shock wave stops somewhere
when the solution has converged. However, because of the small error in the practical compu-
tation, the shock wave exhibits a small shift at each iteration step even after the profile has
converged. We obtain the numerical solution whose shift is small enough compared with the
numerical error contained in the solution.

Let us define the location of the shock wave xs by the point that satisfies

ρ̂(xs) =


(1 + ρ̂∗∗)/2, (M̃− > 1, i.e., Type C),

0.95 + 0.05ρ̂+, (M̃− = 1, , i.e., Type B),

(1 + ρ̂+)/2, (M̃− < 1, i.e., Type A),

(B7)

where the expression for M̃− = 1 is equivalent to ρ̌ = 0.05. Let h stand for the macroscopic

quantities ρ̂, v̂1, p̂11, p̂22, T̂tr, and T̂int. If we denote the position of the shock wave at the nth

iteration step by x
[n]
s and the macroscopic quantities h at the grid point x(i) at the nth step

by h[n,i], then the relative position of the grid point x(i) with respect to the shock location is

x(i) − x
[n]
s .

The convergence is judged by comparing, at each r steps, h[kr,i] and h[(k−1)r,i] (k = 1, 2, . . .).
In this process, we need to compare them at the points whose relative positions with respect to

the shock location are the same. We first obtain x
[kr]
s from ρ̂[kr,i] by the spline interpolation,

and x
[(k−1)r,i]
s from ρ̂[(k−1)r,i] by the same. Then, we interpolate h[kr,i] to obtain the value at

the point x(i) − x
[(k−1)r]
s + x

[kr]
s , which we denote by h̃[kr,i], and compare it with h[(k−1)r,i]. If

the following inequality

max
i

∣∣∣∣∣∣ h̃
[kr,i] − h[(k−1)r,i]

h− − h+

∣∣∣∣∣∣ < ϵ, (h = ρ̂, v̂1, p̂11, p̂22, T̂tr, T̂int), (B8)

holds with a given small ϵ, we judge that the solution has converged. Here, h− and h+ are the
values of h at upstream infinity and downstream infinity, respectively.
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TABLE I: Grid systems in x1.

Grid system M− or M̃− Dn Nn Dp

(M1) M− = 5 80 400 max(5µb/µ, 84)
a

(M2) M− = 1.2 400 400 max(30µb/µ, 420)
b

(M3) M̃− = 1 max(400, 2µb/µ) 400 max(40µb/µ, 420)

(M4) M− = 1.05 100µb/µ 500 120µb/µ

(M1′) M− = 5 64 320 max(4µb/µ, 68)

(M1′′) M− = 5 80 320 max(5µb/µ, 84)

(M2′) M− = 1.2 320 320 max(24µb/µ, 336)

(M2′′) M− = 1.2 400 320 max(30µb/µ, 420)

aDp = 84 for µb/µ = ∞.
bDp = 420 for µb/µ = ∞.

TABLE II: Data for the grid system in ζ1 when the internal degrees of freedom δ = 4.

M− Mn M0 M (δ2Mn+1, δ2M ) (ζ(0), ζ(2M))

5 132 135 332 (0.012, 0.20) (−12.5, 13.9)

1.2 157 26 334 (0.0049, 0.050) (−5.6, 7.1)

1.138. . . (M̃− = 1) 155 19 325 (0.0048, 0.050) (−5.5, 7.0)

1.05 152 7 310 (0.0049, 0.050) (−5.3, 6.9)

If we judge that the convergence has been attained at the nth step, we shift the solution in

such a way that x
[n]
s becomes 0 and repeat the iteration process with the shifted solution as

the initial condition until the convergence is attained. We repeat this process several times to
obtain the solution that satisfies xs = 0 within the error of the computation.

In all the computations, we have set r = 10 and ϵ = 10−8.

b. Data for grid systems in x1

For the grid system in x1 defined by Eq. (B1), the parameters a, p, b, and q were set to be
a = 3, p = 3, b = 1, and q = 2 for all the computations. Then, the number of grid points Np in
the downstream side is determined by the range of computation Dn, the number of grid points
Nn in the upstream side, and the range of computation Dp in the downstream side from the
condition dNn+1 ≈ dNn .

Depending on M−, we used the grid systems (M1) to (M4) in Table 1. In (M1) and
(M2), Np increases with µb/µ (when µb/µ is finite), so that the minimum and maximum
intervals are unchanged: In (M1), Np = 404 (µb/µ = 10), 820 (100), and 5320 (1000), and
(d1, dNn , dNp) ≈ (0.050, 0.50, 1.5); and in (M2), Np = 404 (µb/µ = 10), 920 (100), and
6320 (1000), and (d1, dNn , dNp) ≈ (0.25, 2.5, 7.5). On the other hand, in (M4), Np = 520
is kept constant, and the grid intervals are proportional to µb/µ, so that (d1, dNn , dNp) ≈
(0.050µb/µ, 0.50µb/µ, 1.5µb/µ). In (M3), the number of grid points as well as the grid in-
tervals change with µb/µ: Np = 404 and (d1, dNn , dNp) ≈ (0.25, 2.5, 6.9) for µb/µ = 10,
Np = 1120 and (d1, dNn , dNp) ≈ (0.25, 2.5, 7.5) for µb/µ = 100, and Np = 1920 and
(d1, dNn , dNp) ≈ (0.0013µb/µ, 0.012µb/µ, 0.037µb/µ) for µb/µ ≥ 200.

For M− = 5 and 1.2, we also used systems (M1′) and (M2′) (Table 1) in which the ranges
of computation are 80 percent of those of (M1) and (M2), respectively, and systems (M1′′)
and (M2′′) (Table 1) in which the numbers of grid points are 80 percent of (M1) and (M2),
respectively, for comparison.
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c. Data for grid systems in ζ1

The parameters c and r in the auxiliary system ζ∗(j) [Eq. (B4)] and ζ∗∗(j) [Eq. (B6)] were set

to be c = 3 and r = 3 for all the computation. As described at the end of Appendix B 1, if we

give the width Z and the number of grid points M̃p in ζ∗(i), M0 and Mn are determined. We

determine M from the condition

ζ(2M) ≈ max(v̂− + Z, v̂+ + Z
√
τ), (B9)

where τ is defined by Eq. (B6b). It should be noted that M0, Mn, and M depend on δ and

M− as well as Z and M̃p.
We used the following two grid systems (Z1) and (Z2):

(Z1) Z = 5, M̃p = 50, (Z2) Z = 6, M̃p = 150.

The system (Z1) is for M− = 5 and (Z2) for M− ≤ 1.2. In Table 2, we show the numbers
of grid points Mn, M0, and M together with the minimum and maximum values of the grid
interval δj (= ζ(j) − ζ(j−1)) and those of ζ(j) when the internal degrees of freedom δ = 4.

For M− = 5 and 1.2, we also used systems (Z1′) and (Z2′) in which the ranges of computation
are 80 percent of those of (Z1) and (Z2), respectively, and systems (Z1′′) and (Z2′′) in which
the numbers of grid points are 80 percent of (Z1) and (Z2), respectively, for comparison. That
is,

(Z1
′
) Z = 4, M̃p = 40, (Z1

′′
) Z = 5, M̃p = 40,

(Z2
′
) Z = 4.8, M̃p = 120, (Z2

′′
) Z = 6, M̃p = 120.

3. Accuracy of computation

In this subsection, we denote by h[i] and ϕ
[i,j]
k the values of the macroscopic quantities h

(h = ρ̂, v̂1, p̂11, p̂22, T̂tr, T̂int, and their polynomials) and the marginal velocity distribution
functions ϕk (k = 1, 2, 3) at the grid points after the solution has converged.

a. Comparison of the results based on different grid systems

We carried out computations with different grid systems for M− = 5 and 1.2, δ = 4, and
µb/µ = 10, 100, and 1000 and confirmed that the results are close each other. We compare the

reference result of a macroscopic quantity h
[i]
∗ with the result based on a different grid system

h[i]. We first shift h
[i]
∗ in such a way that its shock-wave location coincides with that of the

solution h[i] and then interpolate h
[i]
∗ at the grid points of h[i]. Denoting the interpolated result

by h
[i]
∗ anew, we obtain the following D:

D = max
h

(
max

i

∣∣∣∣∣h[i] − h
[i]
∗

h− − h+

∣∣∣∣∣
)
, (B10)

where the maximum with respect to h means the maximum over the six macroscopic quantities
ρ̂, v̂1, p̂11, p̂22, T̂tr, and T̂int.

For M− = 5, we regard the result based on (M1, Z1) as the reference solution and compare
it with the results based on (M1′, Z1), (M1′′, Z1), (M1, Z1′), and (M1, Z1′′). The values of
D is as follows: D = 2.4 × 10−5 for (M1′, Z1), 3.5 × 10−4 for (M1′′, Z1), 8.3 × 10−5 for (M1,
Z1′), and 7.0 × 10−6 for (M1, Z1′′). For M− = 1.2, we regard the result based on (M2, Z2)
as the reference solution and compare it with the results based on (M2′, Z2), (M2′′, Z2), (M2,
Z2′), and (M2, Z2′′). The values of D is as follows: D = 2.9× 10−5 for (M2′, Z2), 4.8× 10−5

for (M2′′, Z2), 3.2× 10−6 for (M2, Z2′), and 2.3× 10−7 for (M2, Z2′′).
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b. Conservation laws and others

In order to check the conservation laws, we compute the following C1, C2, and C3:

C1 = max
i

∣∣∣[(ρ̂v̂1)[i] − v̂−

]
/v̂−

∣∣∣ ,
C2 = max

i

∣∣∣[(p̂11 + 2ρ̂v̂21)
[i] − (1 + 2v̂2−)

]
/(1 + 2v̂2−)

∣∣∣ , (B11)

C3 = max
i

∣∣∣(ê[i] − ê−)/ê−

∣∣∣ ,
where

ê = q̂1 + p̂11v̂1 + v̂1

(
3 + δ

2
p̂+ ρ̂v̂21

)
, ê− = v̂−

(
5 + δ

2
+ v̂2−

)
,

and let C = max(C1, C2, C3).
Next, as a measure of the closeness of the solution to the equilibrium values at the edges of

the ranges of the computation in x1, we compute the following D− and D+:

D− = max
h

(
max

−Dn≤x(i)≤−0.95Dn

∣∣∣(h[i] − h−)/(h+ − h−)
∣∣∣) ,

D+ = max
h

(
max

0.95Dp≤x(i)≤Dp

∣∣∣(h[i] − h+)/(h+ − h−)
∣∣∣) .

(B12)

Here, the maximum with respect to h is the same as in Eq. (B10).
The maximum values of C, D−, and D+ over the all computations (for all computations for

different µb/µ and δ) are as follows: (C, D−, D+) = (3.6 × 10−5, 1.6 × 10−7, 4.8 × 10−5) for
M− = 5; (C, D−, D+) = (9.2 × 10−6, 3.4 × 10−8, 2.2 × 10−5) for M− = 1.2; (C, D−, D+) =

(2.8×10−6, 2.9×10−6, 2.8×10−5) for M̃− = 1; and (C, D−, D+) = (2.1×10−6, 8.1×10−6, 5.8×
10−5) for M− = 1.05.

Finally, we show the magnitude of the marginal velocity distribution function ϕk (k = 1, 2, 3)
at the edges of the computational range in ζ1. Let Dζ denote

Dζ = max
k,i

(∣∣∣ϕ[i,0]
k

∣∣∣ , ∣∣∣ϕ[i,2M ]
k

∣∣∣) . (B13)

For M− = 5, Dζ = 4.2× 10−10 [except (Z1′)] and 8.4× 10−7 [(Z1′)]; for M− = 1.2, Dζ = 1.1×
10−15 [except (Z2′)] and 2.2×10−10 [(Z2′)]; and for M̃− = 1 and M− = 1.05, Dζ < 7.1×10−16.

Appendix C: Derivation of the macroscopic equations

In this appendix, we consider the case of large ratio µb/µ (or small θ) and obtain the slowly-
varying solution of Eq. (16) whose length scale of variation is of the order of 1/θ. Although
our original problem is spatially one dimensional, we consider the more general spatially three-

dimensional case where f = f(Xi, ξi, E) or f̂ = f̂(xi, ζi, Ê) on the basis of the ES model:

ζi
∂f̂

∂xi
=

2√
π
Q̂(f̂), (C1)

in place of Eq. (16). In this case, the parameters ρ−, T−, and p− in Eq. (15) should be
interpreted as the reference density, temperature, and pressure, and Eqs. (17)–(19) are valid as
they stand.

1. Hilbert expansion

Let us introduce a new space coordinates yi = (2/
√
π)θxi whose length scale of variation is

of O(1/θ). Then, Eq. (C1) becomes

θζi
∂f̂

∂yi
= Âc(T̂ )ρ̂(Ĝ − f̂). (C2)
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Assuming that θ ≪ 1, we expand f̂ as a power series in θ:

f̂ = f̂ (0) + f̂ (1)θ + f̂ (2)θ2 + · · · . (C3)

Correspondingly, the macroscopic quantities ρ̂, v̂i, p̂ij , ..., which are represented by ĥ, are
expanded as

ĥ = ĥ(0) + ĥ(1)θ + ĥ(2)θ2 + · · · . (C4)

The expressions of ĥ(k) (k = 0, 1, ...) in terms of f̂ (l) (l = 0, 1, ...) are obtained by a straight-
forward calculation in the following form:

ρ̂(k) =

∫∫ ∞

0

f̂ (k)dÊdζ (k = 0, 1, 2, . . .), (C5)

ρ̂(0)v̂
(0)
i =

∫∫ ∞

0

ζif̂
(0)dÊdζ, ρ̂(0)v̂

(1)
i =

∫∫ ∞

0

ζif̂
(1)dÊdζ − ρ̂(1)v̂

(0)
i , . . . , (C6)

p̂
(0)
ij = 2

∫∫ ∞

0

(ζi − v̂
(0)
i )(ζj − v̂

(0)
j )f̂ (0)dÊdζ, (C7a)

p̂
(1)
ij = 2

∫∫ ∞

0

(ζi − v̂
(0)
i )(ζj − v̂

(0)
j )f̂ (1)dÊdζ, . . . , (C7b)

ρ̂(0)T̂
(0)
tr =

(
p̂
(0)
11 + p̂

(0)
22 + p̂

(0)
33

)
/3, ρ̂(0)T̂

(1)
tr =

(
p̂
(1)
11 + p̂

(1)
22 + p̂

(1)
33

)
/3− ρ̂(1)T̂

(0)
tr , . . . ,

(C8)

ρ̂(0)T̂
(0)
int =

2

δ

∫∫ ∞

0

Ê f̂ (0)dÊdζ, ρ̂(0)T̂
(1)
int =

2

δ

∫∫ ∞

0

Ê f̂ (1)dÊdζ − ρ̂(1)T̂
(0)
int , . . . , (C9)

T̂ (k) =
3T̂

(k)
tr + δT̂

(k)
int

3 + δ
, (k = 0, 1, 2, . . .), (C10)

T̂
(0)
rel = T̂

(0)
int , (C11a)

T̂
(k)
rel = T̂

(k)
int +

(
T̂ (k−1) − T̂

(k−1)
int

)
= T̂

(k)
int +

3

3 + δ

(
T̂

(k−1)
tr − T̂

(k−1)
int

)
, (k = 1, 2, . . .).

(C11b)

Consequently, Âc(T̂ ) and Ĝ are also expanded, i.e.,

Âc(T̂ ) = Â(0)
c + Â(1)

c θ + Â(2)
c θ2 + · · · , (C12a)

Ĝ = Ĝ(0) + Ĝ(1)θ + Ĝ(2)θ2 + · · · . (C12b)

Here

Â(0)
c = (Âc)θ=0 = Âc(T̂

(0)), (C13a)

Â(1)
c =

(dÂc

dθ

)
θ=0

=
(dÂc

dT̂

dT̂

dθ

)
θ=0

=
(dÂc

dT̂

)
T̂=T̂ (0)

T̂ (1), . . . , (C13b)

Ĝ(0) = Ĝ|θ=0

=
ρ̂(0)Êδ/2−1

π3/2([det(T̂)](0))1/2(T̂
(0)
rel )

δ/2Γ(δ/2)
exp

(
−(ζi − v̂

(0)
i )(T̂−1)

(0)
ij (ζj − v̂

(0)
j )− Ê

T̂
(0)
rel

)
,

(C13c)

Ĝ(1) =
(dĜ
dθ

)
θ=0

=
(
Ĝ d ln Ĝ

dθ

)
θ=0

= Ĝ(0)Ψ(1), . . . , (C13d)

where

Ψ(1) =
ρ̂(1)

ρ̂(0)
− 1

2

[det(T̂)](1)

[det(T̂)](0)
+

T̂
(1)
rel

T̂
(0)
rel

(
Ê

T̂
(0)
rel

− δ

2

)
− (ζi − v̂

(0)
i )(T̂−1)

(1)
ij (ζj − v̂

(0)
j )

+ v̂
(1)
i (T̂−1)

(0)
ij (ζj − v̂

(0)
j ) + (ζi − v̂

(0)
i )(T̂−1)

(0)
ij v̂

(1)
j . (C14)
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In Eqs. (C13c) and (C14), T̂(k), (T̂−1)(k), and [det(T̂)](k) (k = 0 and 1) are the coefficients of

the expansions of T̂, T̂−1, and det(T̂):

T̂ = T̂(0) + T̂(1)θ + · · · , (C15a)

T̂−1 = (T̂−1)(0) + (T̂−1)(1)θ + · · · , (C15b)

det(T̂) = [det(T̂)](0) + [det(T̂)](1)θ + · · · , (C15c)

and are obtained as follows.
Let us write the (i, j) component of T̂ as

(T̂)ij = (1− θ)Λij + θT̂ δij , Λij = (1− ν)T̂trδij + νp̂ij/ρ̂. (C16)

Since Λij is expanded as

Λij = Λ
(0)
ij + Λ

(1)
ij θ + · · · , (C17)

with

Λ
(0)
ij = (1− ν)T̂

(0)
tr δij + νp̂

(0)
ij /ρ̂(0), (C18a)

Λ
(1)
ij = (1− ν)T̂

(1)
tr δij + ν

(
p̂
(1)
ij − ρ̂(1)p̂

(0)
ij /ρ̂(0)

)
/ρ̂(0), · · · , (C18b)

the (i, j) components of the coefficients of the expansion of T̂ [Eq. (C15a)] are obtained as
follows:

(T̂(0))ij = Λ
(0)
ij , (T̂(k))ij = Λ

(k)
ij +

(
T̂ (k−1)δij − Λ

(k−1)
ij

)
, (k = 1, 2, . . .). (C19)

Next, we consider the relation T̂T̂−1 = E, where E is the 3 × 3 unit matrix. Substituting the

expansions of T̂ and T̂−1 [Eqs. (C15a) and (C15b)] into this relation, we immediately have

T̂(0)(T̂−1)(0) = E, T̂(0)(T̂−1)(1) + T̂(1)(T̂−1)(0) = O, . . . , (C20)

where O is the 3× 3 zero matrix. That is, we have the following relations:

(T̂−1)(0) = (T̂(0))−1, (T̂−1)(1) = −(T̂(0))−1T̂(1)(T̂(0))−1, . . . . (C21)

Finally, the coefficients of the expansion of det(T̂) [Eq. (C15c)] can be obtained as follows:

[det(T̂)](0) = det(T̂)|θ=0 = det(T̂(0)), (C22a)

[det(T̂)](1) =
ddet(T̂)

dθ

∣∣∣
θ=0

= det

(T̂(1))11 (T̂(0))12 (T̂(0))13
(T̂(1))21 (T̂(0))22 (T̂(0))23
(T̂(1))31 (T̂(0))32 (T̂(0))33

+ det

(T̂(0))11 (T̂(1))12 (T̂(0))13
(T̂(0))21 (T̂(1))22 (T̂(0))23
(T̂(0))31 (T̂(1))32 (T̂(0))33


+ det

(T̂(0))11 (T̂(0))12 (T̂(1))13
(T̂(0))21 (T̂(0))22 (T̂(1))23
(T̂(0))31 (T̂(0))32 (T̂(1))33

 , (C22b)

. . . .

If we use Eqs. (C3), (C4), and (C12) in Eq. (C2) and equate the terms of the same power of
θ, we obtain

f̂ (0) = Ĝ(0), (C23a)

f̂ (1) = Ĝ(1) − 1

Â
(0)
c ρ̂(0)

ζi
∂f̂ (0)

∂yi
, (C23b)

· · · .
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Equations (C23a) and (C23b) are, respectively, the integral equations for f̂ (0) and f̂ (1). The
conservation property (21) indicates that∫∫ ∞

0

φ̂r(Ĝ(n) − f̂ (n))dÊdζ = 0, (n = 0, 1, 2, . . .), (C24)

holds, where φ̂r (r = 0, ..., 4) are the dimensionless collision invariants given in Eq. (22).
Equation (C24) with n = 1 gives the compatibility condition of Eq. (C23b), i.e.,

∫∫ ∞

0

 ζj
ζiζj

(ζ2k + Ê)ζj

 ∂f̂ (0)

∂yj
dÊdζ = 0. (C25)

a. 0th-order solution

Equations (C13c) and (C23a) and the relations T̂
(0)
rel = T̂

(0)
int [Eq. (C11a)], (T̂−1)(0) = (T̂(0))−1

[Eq. (C21)], and [det(T̂)](0) = det(T̂(0)) [Eq. (C22a)] give the following f̂ (0):

f̂ (0) =
ρ̂(0)Êδ/2−1

π3/2[det(T̂(0))]1/2 (T̂
(0)
int )

δ/2Γ(δ/2)
exp

(
−(ζi − v̂

(0)
i )[(T̂(0))−1]ij(ζj − v̂

(0)
j )− Ê

T̂
(0)
int

)
.

(C26)

If we calculate p̂
(0)
ij using Eqs. (C26) and (C7a), we have

p̂
(0)
ij = ρ̂(0)(T̂(0))ij = (1− ν)ρ̂(0)T̂

(0)
tr δij + νp̂

(0)
ij . (C27)

Since ν ̸= 1, we obtain

p̂
(0)
ij = ρ̂(0)T̂

(0)
tr δij . (C28)

In consequence, we obtain the following (T̂(0))ij and thus f̂ (0):

(T̂(0))ij = T̂
(0)
tr δij , (C29)

f̂ (0) =
ρ̂(0)Êδ/2−1

(πT̂
(0)
tr )3/2(T̂

(0)
int )

δ/2Γ(δ/2)
exp

(
−
(ζk − v̂

(0)
k )2

T̂
(0)
tr

− Ê
T̂

(0)
int

)
. (C30)

Here, ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int are unknown functions, the equation for which will be derived

in Appendix C 2. Equation (C30) is the dimensionless local equilibrium distribution for θ = 0
[cf. Eq. (A17)].

b. 1st-order solution

From Eq. (C23b), the first-order solution is expressed as

f̂ (1) = f̂ (0)Ψ(1) − 1

Â
(0)
c ρ̂(0)

ζi
∂f̂ (0)

∂yi
. (C31)

From the 0th-order result and Eqs. (C19), (C21), and (C22b), we have the following expressions:

(T̂(1))ij =
[
T̂

(1)
tr +

(
T̂ (0) − T̂

(0)
tr

)]
δij + ν

1

ρ̂(0)

(
p̂
(1)
ij − 1

3
p̂
(1)
kk δij

)
, (C32a)

(T̂−1)(1) = − 1

(T̂
(0)
tr )2

T̂(1), [det(T̂)](1) = (T̂
(0)
tr )2 tr(T̂(1)), (C32b)
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where tr(T̂(1)) indicates the trace of T̂(1). With these relations, Ψ(1) in Eq. (C14) is transformed
into the following form:

Ψ(1) =
ρ̂(1)

ρ̂(0)
− tr(T̂(1))

2T̂
(0)
tr

+
T̂

(1)
rel

T̂
(0)
int

(
Ê

T̂
(0)
int

− δ

2

)
+ (T̂(1))ij

(ζi − v̂
(0)
i )(ζj − v̂

(0)
j )

(T̂
(0)
tr )2

+ 2
(ζj − v̂

(0)
j )v̂

(1)
j

T̂
(0)
tr

=
ρ̂(1)

ρ̂(0)
+ 2

(ζj − v̂
(0)
j )v̂

(1)
j

T̂
(0)
tr

+
tr(T̂(1))

3T̂
(0)
tr

[
(ζk − v̂

(0)
k )2

T̂
(0)
tr

− 3

2

]
+

T̂
(1)
rel

T̂
(0)
int

(
Ê

T̂
(0)
int

− δ

2

)

+

[
(T̂(1))ij −

1

3
tr(T̂(1))δij

]
(ζi − v̂

(0)
i )(ζj − v̂

(0)
j )

(T̂
(0)
tr )2

=
ρ̂(1)

ρ̂(0)
+ 2

(ζj − v̂
(0)
j )v̂

(1)
j

T̂
(0)
tr

+
1

T̂
(0)
tr

[
T̂

(1)
tr +

(
T̂ (0) − T̂

(0)
tr

)][ (ζk − v̂
(0)
k )2

T̂
(0)
tr

− 3

2

]

+
1

T̂
(0)
int

[
T̂

(1)
int +

(
T̂ (0) − T̂

(0)
int

)]( Ê
T̂

(0)
int

− δ

2

)

+ ν
1

ρ̂(0)T̂
(0)
tr

(
p̂
(1)
ij − 1

3
p̂
(1)
kk δij

)
(ζi − v̂

(0)
i )(ζj − v̂

(0)
j )

T̂
(0)
tr

. (C33)

2. Macroscopic equations

By using Eq. (C30) in the compatibility condition (C25), we obtain the following five equa-

tions containing six functions ρ̂(0), v̂
(0)
j , T̂

(0)
tr , and T̂

(0)
int :

∂

∂yj

(
ρ̂(0)v̂

(0)
j

)
= 0, (C34a)

∂

∂yj

(
1

2
ρ̂(0)T̂

(0)
tr δij + ρ̂(0)v̂

(0)
i v̂

(0)
j

)
= 0, (C34b)

∂

∂yj

[
ρ̂(0)v̂

(0)
j (v̂

(0)
k )2 + ρ̂(0)v̂

(0)
j

5T̂
(0)
tr + δT̂

(0)
int

2

]
= 0. (C34c)

Therefore, we need one more equation to close the system, which will be obtained in the
following process.

In addition to the zeroth-order variables ρ̂(0), v̂
(0)
j , T̂

(0)
tr , and T̂

(0)
int , the first-order solution

f̂ (1) contains the first-order variables ρ̂(1), v̂
(1)
i , p̂

(1)
ij , T̂

(1)
tr , and T̂

(1)
int . If we calculate ρ̂(1) and

v̂
(1)
j using Eqs. (C31), (C33), (C5), and (C6) and taking Eq. (C25) into account, we obtain the

trivial result, i.e., ρ̂(1) = ρ̂(1) and v̂
(1)
i = v̂

(1)
i .

Now, let us calculate p̂
(1)
ij from Eq. (C7b), that is,

p̂
(1)
ij = 2

∫∫ ∞

0

(ζi − v̂
(0)
i )(ζj − v̂

(0)
j )f̂ (1)dÊdζ

= 2

∫∫ ∞

0

(ζi − v̂
(0)
i )(ζj − v̂

(0)
j )

(
f̂ (0)Ψ(1) − 1

Â
(0)
c ρ̂(0)

ζk
∂f̂ (0)

∂yk

)
dÊdζ. (C35)

The calculation of the term containing Ψ(1) is straightforward. The term containing ∂f̂ (0)/∂yk
can be calculated conveniently as follows. Let ci = ζi − v̂

(0)
i and write (ζi − v̂

(0)
i )(ζj −
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v̂
(0)
j )ζk∂f̂

(0)/∂yk as

cicjζk
∂f̂ (0)

∂yk
= cicjck

∂f̂ (0)

∂yk
+ v̂

(0)
k cicj

∂f̂ (0)

∂yk

=
∂

∂yk

(
cicjckf̂

(0)
)
+

∂v̂
(0)
i

∂yk
cjckf̂

(0) + ci
∂v̂

(0)
j

∂yk
ckf̂

(0) + cicj
∂v̂

(0)
k

∂yk
f̂ (0)

+ v̂
(0)
k

∂

∂yk

(
cicj f̂

(0)
)
+ v̂

(0)
k

∂v̂
(0)
i

∂yk
cj f̂

(0) + v̂
(0)
k ci

∂v̂
(0)
j

∂yk
f̂ (0). (C36)

Taking into account the relations∫∫ ∞

0

cif̂
(0)dÊdζ =

∫∫ ∞

0

cicjckf̂
(0)dÊdζ = 0,

∫∫ ∞

0

cicj f̂
(0)dÊdζ =

1

2
ρ̂(0)T̂

(0)
tr δij , (C37)

we can immediately integrate Eq. (C36) to obtain

2

∫∫ ∞

0

cicjζk
∂f̂ (0)

∂yk
dÊdζ = ρ̂(0)T̂

(0)
tr

(
∂v̂

(0)
i

∂yj
+

∂v̂
(0)
j

∂yi
+

∂v̂
(0)
k

∂yk
δij

)
+ v̂

(0)
k

∂

∂yk

(
ρ̂(0)T̂

(0)
tr

)
δij .

(C38)

As the result, Eq. (C35) leads to the following expression of p̂
(1)
ij :

p̂
(1)
ij = (ρ̂(0)T̂

(1)
tr + ρ̂(1)T̂

(0)
tr )δij +

1

1− ν
ρ̂(0)

(
T̂ (0) − T̂

(0)
tr

)
δij

− 1

1− ν

T̂
(0)
tr

Â
(0)
c

(
∂v̂

(0)
i

∂yj
+

∂v̂
(0)
j

∂yi
+

∂v̂
(0)
k

∂yk
δij

)

− 1

1− ν

v̂
(0)
k

Â
(0)
c ρ̂(0)

∂

∂yk

(
ρ̂(0)T̂

(0)
tr

)
δij . (C39)

In this way, we obtain the expression of p̂
(1)
ij in terms of ρ̂(1) and T̂

(1)
tr and the zeroth-order

quantities.

Next, let us calculate T̂
(1)
tr from Eq. (C8), i.e., ρ̂(0)T̂

(1)
tr + ρ̂(1)T̂

(0)
tr = (1/3)p̂

(1)
kk . If we calculate

p̂
(1)
kk by contracting Eq. (C39) and using it in this relation, the term ρ̂(0)T̂

(1)
tr + ρ̂(1)T̂

(0)
tr is

canceled, and we are left with the following relation:

v̂
(0)
k

∂T̂
(0)
tr

∂yk
= Â(0)

c ρ̂(0)
(
T̂ (0) − T̂

(0)
tr

)
− 2

3
T̂

(0)
tr

∂v̂
(0)
k

∂yk
, (C40)

where use has been made of Eq. (C34a). Because of the relations

Â(0)
c = Âc(T̂

(0)), T̂ (0) =
3T̂

(0)
tr + δT̂

(0)
int

3 + δ
, (C41)

Eq. (C40) is an equation containing only the zeroth-order quantities ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int .

Therefore, it can be the equation to be added to Eq. (C34) to form a closed set.

Finally, we calculate T̂
(1)
int from Eq. (C9), i.e.,

ρ̂(0)T̂
(1)
int + ρ̂(1)T̂

(0)
int =

2

δ

∫∫ ∞

0

Ê f̂ (1)dÊdζ

=
2

δ

∫∫ ∞

0

Ê

(
f̂ (0)Ψ(1) − 1

Â
(0)
c ρ̂(0)

ζk
∂f̂ (0)

∂yk

)
dÊdζ. (C42)
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Again, the calculation of the term containing Ψ(1) is straightforward. From the fact that

the term Êζk(∂f̂ (0)/∂yk) can be transformed into Ê(∂ckf̂ (0)/∂yk) + Ê(∂v̂(0)k f̂ (0)/∂yk) and that∫ ∫∞
0

Êckf̂ (0)dÊdζ = 0 and
∫ ∫∞

0
Ê f̂ (0)dÊdζ = (δ/2)ρ̂(0)T̂

(0)
int hold, we immediately have

2

δ

∫∫ ∞

0

Êζk
∂f̂ (0)

∂yk
dÊdζ =

∂

∂yk

(
v̂
(0)
k ρ̂(0)T̂

(0)
int

)
. (C43)

Then, Eq. (C42) becomes

ρ̂(0)T̂
(1)
int + ρ̂(1)T̂

(0)
int = ρ̂(1)T̂

(0)
int + ρ̂(0)T̂

(1)
int + ρ̂(0)

(
T̂ (0) − T̂

(0)
int

)
− 1

Â
(0)
c ρ̂(0)

∂

∂yk

(
v̂
(0)
k ρ̂(0)T̂

(0)
int

)
,

(C44)

which gives, with the help of Eq. (C34a),

v̂
(0)
k

∂T̂
(0)
int

∂yk
= Â(0)

c ρ̂(0)
(
T̂ (0) − T̂

(0)
int

)
. (C45)

From Eq. (C41), this is also an equation containing ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int , which can be

another candidate of the equation to be added to Eq. (C34) to form a closed set.
Here, we should note the fact that we can recover Eq. (C34c) by adding Eq. (C40) ×3ρ̂(0)

and Eq. (C45) ×δρ̂(0). Therefore, only two equations out of Eqs. (C34c), (C40), and (C45) are
independent.

In summary, the zeroth-order quantities ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int are governed by Eqs. (C34a)

and (C34b) and two equations out of Eqs. (C34c), (C40), and (C45). This scheme should also
work in the higher order. For instance, from the compatibility condition for the equation for

f̂ (2), we obtain the counterparts of Eq. (C34) for the first-order variables ρ̂(1), v̂
(1)
i , T̂

(1)
tr , and

T̂
(1)
int . Then, by calculating T̂

(2)
tr and T̂

(2)
int with f̂ (2), we derive the two counterparts of Eqs. (C40)

and (C45) for the first-order variables. We use the counterparts of Eqs. (C34a) and (C34b) and
choose two from the counterparts of Eqs. (C34c), (C40), and (C45) to have a closed set for ρ̂(1),

v̂
(1)
i , T̂

(1)
tr , and T̂

(1)
int .

It should be remarked that Eqs. (C34) and (C40) [or (C45)] are essentially the same as
the macroscopic equations for 6 macroscopic variables derived in [31, 32] if the slowly-varying
variables corresponding to yi [Eq. (49)] are used in the latter equations. These equations,
which are not restricted to slowly-varying solutions, are obtained by the theory of extended
thermodynamics [31] or by an appropriate moment closure based on kinetic theory [31, 32].
On the other hand, Eqs. (C34) and (C40) [or (C45)], which are restricted to slowly-varying
solutions, are derived without any moment-closure assumption. We should also mention that
the macroscopic equations for 6 macroscopic variables have been extended to the case of a
thermally perfect (or non-polytropic) gas for which the specific heats at constant pressure and
at constant volume are both temperature dependent [46].

Appendix D: Integral in Eq. (64)

In this Appendix, we summarize the explicit form of the indefinite integral of the integral in

Eq. (64) for Âc(T̂ ) = 1, T̂ , and
√

T̂ .

• Case of Âc(T̂ ) = 1:

∫
u2 (v̂∗ − u)

(v̂− − u) (u− v̂+)
du =

1

2
u2 +Au+B ln(v̂− − u) + C ln(u− v̂+), (D1a)

A = v̂− + v̂+ − v̂∗, B =
v̂2− (v̂− − v̂∗)

v̂− − v̂+
, C =

v̂2+ (v̂∗ − v̂+)

v̂− − v̂+
. (D1b)
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• Case of Âc(T̂ ) = T̂ :

(γ − 1)

∫
u2 (v̂∗ − u)

T̂ (u) (v̂− − u) (u− v̂+)
du = A ln(v̂− − u) +B ln(u− v̂+)

+ C ln
(
(u− α)2 + β2

)
+

D

β
tan−1 u− α

β
, (D2a)

α =
8

5
v̂∗, β =

√
1

γ − 1
− 1

4v̂2−
, (D2b)

A =
v̂2−(v̂− − v̂∗)

(v̂− − v̂+) [(v̂− − α)2 + β2]
, B =

v̂2+(v̂∗ − v̂+)

(v̂− − v̂+) [(v̂+ − α)2 + β2]
, (D2c)

C =
1

2
(1−A−B), D = (α2 + β2)

(
A

v̂−
+

B

v̂+

)
+ 2αC. (D2d)

• Case of Âc(T̂ ) =
√
T̂ :

√
γ − 1

∫
u2 (v̂∗ − u)√

T̂ (u) (v̂− − u) (u− v̂+)
du = A (ln |t− tA+| − ln |t− tA−|)

+B (ln |t− tB+| − ln |t− tB−|) + C (ln |t+ 1| − ln |t− 1|) + β

(
1

t+ 1
− 1

t− 1

)
,

(D3a)

t =

√
(u− α)2 + β2 − β

u− α
, α =

8

5
v̂∗, β =

√
1

γ − 1
− 1

4v̂2−
, (D3b)

tA± =
1

v̂− − α

(
−β ±

√
(v̂− − α)2 + β2

)
, tB± =

1

v̂+ − α

(
−β ±

√
(v̂+ − α)2 + β2

)
,

(D3c)

A =
v̂2−(v̂− − v̂∗)

(v̂− − v̂+)
√

(v̂− − α)2 + β2
, B =

v̂2+(v̂∗ − v̂+)

(v̂− − v̂+)
√
(v̂+ − α)2 + β2

, (D3d)

C = v̂− + v̂+ +
3

5
v̂∗. (D3e)
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