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Abstract. In this paper, we propose and analyze a mixed H1-conforming finite element method for solving Maxwell’s equations in
terms of electric field and Lagrange multiplier, where the multiplier is introduced accounting for the divergence constraint. We mainly
focus on the case that the physical domain is non-convex and its boundary includes reentrant corners or edges, which may lead the
solution of Maxwell’s equations to be a non-H1 very weak function and thus causes many numerical difficulties. The proposed
method is formulated in the stabilized form by adding an additional mesh-dependent stabilization term to the mixed variational
formulation. A general framework of stability and error analysis is established. Specifically, a pair of H1-conforming finite elements,
namely the CP2-P1 elements, for electric field and multiplier is studied and its stability and error bounds are also derived. Numerical
experiments for source problems as well as eigenvalue problems on the L-shaped and cracked domains are presented to illustrate the
high performance of the proposed mixed H1-conforming finite element method.
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1. Introduction. As is well-known, the solution of Maxwell’s equations would be an H1 function when
the physical domain is convex polygonal or smooth enough. In such case, the usual H1-conforming finite
element method (FEM) based on the plain curl/div formulation is effective and efficient [45, 46], just like
the Poisson equation of Laplacian whose methods and theory are classical and well established (cf. [20, 21]).
This gives rise to a question: how about the case of non-H1 solution? Unfortunately, the H1-conforming
FEM would fail for solving Maxwell’s equations whenever the exact solution is a non-H1 function [13].
Such a non-H1 solution, which is very singular, may take place if, for example, the physical domain is a
non-convex polygon with some reentrant corners and/or edges [2, 26, 27]. The reason behind the failure
is due to the fact that the density in the norm ‖ · ‖0,curl,div would not hold for the H1-conforming finite
element space in the solution space H0(curl; Ω)∩ H(div; Ω) (cf. [28, 43]). This therefore leads the finite ele-
ment solutions to an incorrect convergence. That is, it does not converge to the true solution in the non-H1

space, but to a member of H1 space instead. However, it is quite a natural choice to use the H1-conforming
finite elements, because the space H0(curl; Ω) ∩ H(div; Ω) is a physically and mathematically meaningful
choice for the solution of Maxwell’s equations and any H0(curl; Ω)∩ H(div; Ω)-conforming finite elements
of polynomials must necessarily belong to the H1 space, and consequently continuous in the entire domain.
To sum up, we use the classical H1-conforming FEM to solve Maxwell’s equations when the solution is an
H1 function. When the solution is non-H1, it would be still desirable to consider the H1-conforming method
using nodal-continuous Lagrange elements, since there are numerous algorithms, softwares and solution
methods available, and also as an interesting alternative to the edge element methods [44, 58].
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Only over the last decade, several successful methods for numerically solving Maxwell’s equations
with non-H1 solutions have been proposed and analyzed, see e.g., [7, 11, 14, 15, 18, 28, 32, 34, 35, 36, 37,
38, 54, 55]. One can find that the central idea behind these methods is to modify the plain curl/div for-
mulation in either the continuous stage or the discrete stage. In this paper, we shall develop a new mixed
H1-conforming FEM for Maxwell’s equations in the vector potential form. We mainly focus on the case that
the physical domain is non-convex and its boundary includes reentrant corners or edges, which may lead
the solution of Maxwell’s equations to be a non-H1 very weak function. The proposed method is based
on a Galerkin variational formulation which is the same as the one that is typically employed in the edge
element methods [58]. It is a mixed or saddle-point form, involving the electric field and the Lagrange
multiplier. The multiplier is introduced to weaken the divergence constraint. Such a constraint is usually
expressed as divergence-free, also called gauge condition [13, 45], for the uniqueness of the solution. The
divergence constraint corresponds to the physical law of conservation of some quantity such as charge.
The main difference with the edge element methods is that we use the H1-conforming finite element space
for electric field, instead of the edge elements which are H(curl; Ω)-conforming only. Moreover, a mesh-
dependent term of the divergence operator is additionally added to the mixed variational formulation for
the sake of stability. The mesh-dependent stabilization term is element-by-element defined, and also well-
defined even in the case of edge element. For this newly proposed FEM, the stability is analyzed in the
framework of classical theory for saddle-point problems, see, e.g., [17]. In other words, by the verification
of the Kh-coercivity and the Babuška-Brezzi inf-sup condition, we can show that the method is stable.

For this proposed method, we find that if the solution of electric field is smooth enough, optimal error
bounds can follow from the classical theory of saddle-point problems [17]. On the other hand, when the
solution of electric field is non-H1, we will analyze in detail a specific pair of H1-conforming mixed finite
elements, namely the CP2-P1 elements. The Lagrange multiplier is approximated by linear (P1) elements
and the electric field is solved by CP2 elements, where CP2 means the space of composite quadratic (P2)
elements so that it contains the gradient of a kind of C1 elements. Other composite elements in two and
three dimensions can be constructed in order that the gradient of C1 elements can be included as a subspace,
while the composite triangulations of C1 elements and the finite element interpolation properties have been
now readily available in two and three dimensions, see [4, 5, 47, 48, 49, 50, 51, 52, 53]. In this paper, we first
provide a general framework of stability and error analysis and then give further error estimates for the
CP2-P1 finite element space. These finite elements and their analysis of stability and error bounds are new
to Maxwell’s equations, to the authors’ knowledge. In order to illustrate the high performance of the pro-
posed mixed H1-conforming FEM, we present several numerical examples for source problems as well as
eigenvalue problems on L-shaped and cracked non-convex domains. Numerical results confirm the theo-
retical analysis.

The remainder of this paper is organized as follows. In Section 2, the system of Maxwell’s equations is
introduced, together with its variational formulation. The mixed H1-conforming FEM is proposed in Sec-
tion 3, where an additional mesh-dependent stabilization term is added into the variational formulation.
A general framework of stability and error analysis is provided in Section 4. Error estimates of the CP2-P1
finite element space are established in Section 5. Numerical results of the source and eigenvalue problems
on non-convex domains are presented in Section 6. Some concluding remarks are given in Section 7.

2. Maxwell’s equations and the mixed variational formulation. Let Ω be a non-convex polygonal
domain in R2 with Lipschitz boundary Γ having reentrant corners or edges. The L2(Ω) function space is
defined as

L2(Ω) =
{

q : Ω→ R is Lebesgue measurable with
∫

Ω
q2 < ∞

}
,
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equipped with the L2 inner product (p, q) :=
∫

Ω pq and the L2 norm ‖q‖0 :=
√
(q, q). The vector L2 space,

(L2(Ω))2, will denote the product of two L2(Ω) spaces. The corresponding L2 inner product and the L2

norm will be denoted by the same notations (·, ·) and ‖ · ‖0, i.e., (u, v) =
∫

Ω u · v and ‖v‖0 =
√
(v, v).

In this paper, we will focus on the following boundary value problem for Maxwell’s equations: find the
electric field u = (u1, u2)

> such that

curl curl u = f , div u = g in Ω, u · τ = 0 on Γ, (2.1)

where f ∈ (L2(Ω))2 and g ∈ L2(Ω) are given source terms and τ denotes the unit tangential vector along
boundary Γ. We define the curl operator on the vector-valued function v = (v1, v2) by curl v := ∂xv2− ∂yv1
and on a scalar function ϕ by curl ϕ := (∂y ϕ,−∂x ϕ). We also define the divergence operator on v as
div v := ∂xv1 + ∂yv2. This type of Maxwell’s equations which takes a simplest form is usually referred to as
the vector potential equations [19, 40, 41]. The divergence equation div u = g in Ω, also called gauge con-
dition in engineering community, is often introduced as a constraint with g = 0 to ensure the uniqueness
of the vector potential u.

We can consider the more general Maxwell equations in the form

curl curl u + λu = f , div u = g in Ω, u · τ = 0 on Γ, (2.2)

where g = div f /λ for λ 6= 0. Here λ may stand for the inverse of the time step in the time-discretization
of transient Maxwell’s equations [25, 58]. If (2.1) is numerically solved well with the FEM, one should ex-
pect that (2.2) can also be well solved from the same method in the case of λ > 0. Furthermore, we may
also consider the Maxwell eigenvalue problem by setting f and g to zero in (2.2) and letting (u,−λ) be the
unknown eigenfunction and eigenvalue. The numerical results presented in Section 6 below show that the
Maxwell eigenvalue problem can be efficiently solved by our method (described in Section 3). However, a
further theory still needs to be investigated, since the eigenvalue problem may be quite different from the
source problem [9].

As is well-known, (2.1) is usually put into a mixed form: find u and p such that

curl curl u +∇p = f , div u = g in Ω, u · τ = 0, p = 0 on Γ. (2.3)

If the solution pair (u, p) is smooth, we obtain by taking divergence on the first equation that

∆p = 0 in Ω, p = 0 on Γ, (2.4)

since, from (2.1), f should satisfy the compatibility condition div f = 0 in Ω. Then it can be easily seen
that p is identically equal to zero on Ω. The role that p plays is the Lagrange multiplier, accounting for the
divergence equation div u = g. This multiplier is sometimes named as a dummy variable by engineers.
For problem (2.3), a popular FEM is to use an H(curl; Ω)-conforming edge elements for u and an H1(Ω)-
conforming elements for p. The mixed variational problem reads: find u ∈ H0(curl; Ω) and p ∈ H1

0(Ω)
such that

(curl u, curl v) + (∇p, v) = ( f , v) ∀ v ∈ H0(curl; Ω),
(u,∇q) = −(g, q) ∀ q ∈ H1

0(Ω),
(2.5)

where the function spaces are defined as follows:

H1(Ω) = {q : q ∈ L2(Ω), ∇q ∈ (L2(Ω))2},
H1

0(Ω) = {q : q ∈ H1(Ω), q|Γ = 0}
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both with the standard inner product and associated norm, and

H(curl; Ω) = {v : v ∈ (L2(Ω))2, curl v ∈ L2(Ω)},
H0(curl; Ω) = {v : v ∈ H(curl; Ω), v · τ|Γ = 0}

both with the following inner product and associated norm: for all v, w ∈ H(curl; Ω),

(v, w)H(curl) := (v, w) + (curl v, curl w), ‖v‖H(curl) :=
(
‖v‖2

0 + ‖curl v‖2
0
)1/2.

From [27] (see Theorem 3.4 on page 243) we know that the solution u of (2.1) can be split into two parts:
a regular part and a singular part, i.e., u = uR +∇pS, with uR ∈ (H1+r(Ω))2 and pS ∈ H1+r(Ω) for any
r < rΩ. Here rΩ > 1/2 depends on Ω. Such split indicates that u ∈ (Hr(Ω))2 and curl u ∈ Hr(Ω). For
cracked polygonal domain (although not being Lipschitzian), the same results hold for rΩ = 1/2.

3. A mixed H1-conforming finite element method. In this section, we shall introduce a mixed H1-
conforming FEM for solving (2.5). That is to say, we want to use the H1-conforming elements for u as well,
instead of the H(curl; Ω)-conforming edge elements. It is seemingly not difficult to do so, but, as we have
mentioned in the introduction section, the fact is that a simply direct application of H1-conforming FEM
would lead to a wrong convergence. This may happen if the exact solution u does not belong to H1. The
wrong convergence means that the H1-conforming finite element solution (if it exists) from (2.5) would
converge to an H1 element, not to the true solution which is outside H1 [10, 28, 32]. Another important fact
is that the direct H1-conforming FEM may not be stable, because the bilinear form (curl u, curl v) may lack
stability in the kernel set of (v,∇q) in the H1-conforming finite element space. In terms of theKh-coercivity
(see Section 4) and the Babuška-Brezzi inf-sup condition, the Kh-coercivity may fail. This fact is in sharp
contrast to the continuous problem for which the bilinear form (curl u, curl v) is coercive in the kernel set
of (v,∇q), e.g., see [3]. Consequently, problem (2.5) in H1-conforming finite element spaces would even
not possess a solution. Readers may refer to the classical book [17] for more details about the theory of
saddle-point problems.

Let Th be a conforming triangulation of Ω into shape-regular triangles [16, 20], where h := maxT∈Th hT
is the mesh parameter of the triangulation and hT is the diameter of triangle T. On each T, we denote
by P`(T) the space of polynomials of degree not greater than `. Let Uh ⊂ (H1(Ω))2 ∩ H0(curl; Ω) and
Qh ⊂ H1

0(Ω) be the H1-conforming finite element spaces for the unknowns u and p, respectively. The
certain choices of Uh and Qh will be specified in Section 5. To have a correct convergence and to have a
stability, we propose the mixed H1-conforming FEM which is formulated in the following stabilized form:
find uh ∈ Uh ⊂ (H1(Ω))2 ∩ H0(curl; Ω) and ph ∈ Qh ⊂ H1

0(Ω) such that for all vh ∈ Uh and qh ∈ Qh, we
have

(curl uh, curl vh) + ∑
T∈Th

h2
T(div uh, div vh)0,T + (∇ph, vh) = ( f , vh) + ∑

T∈Th

h2
T(g, div vh)0,T ,

(uh,∇qh) = −(g, qh),
(3.1)

where (·, ·)0,T denotes the L2 inner product over the element T. The mesh-dependent term plays the role of
stabilization, a remedy to the lost stability from (curl uh, curl vh) on the kernel set of (vh,∇qh). Of course,
for edge elements in H(curl; Ω) space, a coercivity indeed holds on this kernel set [1], without such stabi-
lization. We note that (3.1) is still well-defined for edge elements. The stabilized mixed formulation (3.1)
is therefore more interesting, since it can be used for both H1-conforming elements and edge elements of
H(curl; Ω)-conforming only. The expression (∇ph, vh) in (3.1) is exactly equal to −(ph, div vh), but the
present analysis seems not to be improved with the use of the latter expression −(ph, div vh).
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We now briefly summarize the differences of the proposed mixed H1-conforming stabilized FEM (3.1)
from the other methods in the literature:

• The method (3.1) is different from those in [18, 24, 28], where a global-defined over Ω weight func-
tion, denoted by w, which depends the geometrical singularities, is introduced to the divergence
term:

(curl uh, curl vh) + (w div uh, div vh) + (∇ph, vh) = ( f , vh) + (wg, div vh),
(uh,∇qh) = −(g, qh).

(3.2)

• The method (3.1) is different from those in [32, 34, 35, 36, 37], where an L2 inner product term of ph
is introduced:

(curl uh, curl vh) + ∑
T∈Th

h2
T(div uh, div vh)0,T + (∇ph, vh) = ( f , vh) + ∑

T∈Th

h2
T(g, div vh)0,T ,

(uh,∇qh)− (ph, qh) = −(g, qh).
(3.3)

• The method (3.1) is different from those in [7, 11, 14, 15], where mesh-dependent L2 inner product
terms with α ∈ (1/2, 1] are introduced:

(curl uh, curl vh) + h2α(div uh, div vh) + (∇ph, vh) = ( f , vh) + h2α(g, div vh),
(uh,∇qh)− h2(1−α)(∇ph,∇qh) = −(g, qh).

(3.4)

One can also see that the arguments which will be developed in this paper for the analysis of stability and
error estimates are different from those in the above literature. Moreover, the H1-conforming elements and
their stability analysis and error estimates in our paper are new to Maxwell’s equations. Finally, we should
emphasize that the mixed H1-conforming FEM (3.1) has not been studied so far, to the authors’ knowledge.

4. A general framework of stability and error analysis. In this section, we provide a general frame-
work of stability and error analysis for the mixed H1-conforming FEM (3.1). We shall follow the clas-
sical theory for saddle-point problems as developed in the book of Brezzi and Fortin [17]. This con-
sists of the verification of the Kh-coercivity/stability and the Babuška-Brezzi inf-sup condition. We first
introduce the bilinear forms a(·, ·) : (H0(curl; Ω) ∩ H(div; Ω)) × (H0(curl; Ω) ∩ H(div; Ω)) → R and
b(·, ·) : H0(curl; Ω)× H1

0(Ω)→ R by

a(u, v) = (curl u, curl v) + ∑
T∈Th

h2
T(div u, div v)0,T , (4.1)

b(v, q) = (∇q, v), (4.2)

and then define the kernel set Kh by

Kh := {vh ∈ Uh : b(vh, qh) = 0, ∀ qh ∈ Qh}. (4.3)

Define an H1 finite element projection Rh : χ ∈ H−1(Ω)→ Rh(χ) ∈ Qh as follows:

(Rh(χ), qh)1 := (∇Rh(χ),∇qh) = 〈χ, qh〉 ∀ qh ∈ Qh, (4.4)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) (the dual of H1
0(Ω)) and H1

0(Ω). Such Rh is actu-
ally the discrete version of the so-called Riesz-representation operator, denoted by R : H−1(Ω) → H1

0(Ω),
which is defined by (R(χ), q)1 := 〈χ, q〉 for all q ∈ H1

0(Ω). Now, for any v ∈ (L2(Ω))2, since div v ∈
H−1(Ω), we have

(Rh(div v), qh)1 = 〈div v, qh〉 = −(∇qh, v) ∀ qh ∈ Qh. (4.5)
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It can be seen that for any v ∈ (L2(Ω))2,

|Rh(div v)|1 ≤ ‖v‖0,

where | · |1 denotes the H1 semi-norm, i.e., |q|1 =
√
(q, q)1 =

√
(∇q,∇q). Throughout this paper, we let C

denote a generic positive constant, possibly different at different occurrences, which is always independent
of the mesh parameter h.

PROPOSITION 4.1. We have

|||vh|||2h := ‖curl vh‖2
0 + |Rh(div vh)|21 + ∑

T∈Th

h2
T‖div vh‖2

0,T ≥ C‖vh‖2
0 ∀ vh ∈ Uh. (4.6)

Proof. We show (4.6) following the argument in [32] (see Theorem 4.1 on pages 1287-1290). Introducing
two function spaces,

H(div; Ω) = {v ∈ (L2(Ω))2 : div v ∈ L2(Ω)},
H(div0; Ω) = {v ∈ H(div; Ω) : div v = 0},

we have by the L2-orthogonal decomposition that

vh = φ +∇q, φ ∈ H(curl; Ω) ∩ H(div0; Ω), q ∈ H1
0(Ω),

‖vh‖2
0 = ‖φ‖2

0 + ‖∇q‖2
0.

Since vh ∈ H0(curl; Ω), we see that φ ∈ H0(curl; Ω), and that there holds the Poincaré inequality on
H0(curl; Ω) ∩ H(div0; Ω),

‖φ‖0 ≤ C‖curl φ‖0 = C‖curl vh‖0.

We then find that

‖vh‖2
0 ≤ C

(
‖curl vh‖2

0 + |q|21
)
.

Let qh ∈ Qh ⊂ H1
0(Ω) denote a finite element interpolation of q ∈ H1

0(Ω), satisfying(
∑

T∈Th

h−2
T ‖qh − q‖2

0,T

)1/2
+ ‖qh‖1 ≤ C‖q‖1,

where ‖q‖2
1 = ‖q‖2

0 + |q|21, satisfying ‖q‖1 ≤ C|q|1. Taking a constant α > 0 to be determined, we have

|Rh(div vh)|21 = |Rh(div vh) + αqh|21 − 2α
(

Rh(div vh), qh
)

1 − α2|qh|21.

Below we estimate the last two terms in the above. Firstly,

|qh|21 ≤ C|q|21.

Secondly,

−2α
(

Rh(div vh), qh
)

1 = 2α(vh,∇qh) = 2α
(
vh,∇(qh − q)

)
+ 2α(vh,∇q),
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where

2α(vh,∇q) = 2α(φ +∇q,∇q) = 2α‖∇q‖2
0 = 2α|q|21

and

2α
(
vh,∇(qh − q)

)
= −2α(div vh, qh − q)

≥ −2α
(

∑
T∈Th

h2
T‖div vh‖2

0,T

)1/2(
∑

T∈Th

h−2
T ‖qh − q‖2

0,T

)1/2

≥ −2αC‖q‖1

(
∑

T∈Th

h2
T‖div vh‖2

0,T

)1/2
≥ −2αC|q|1

(
∑

T∈Th

h2
T‖div vh‖2

0,T

)1/2

≥ − ∑
T∈Th

h2
T‖div vh‖2

0,T − α2C|q|21.

Thus, putting 0 < α := 1/(2C), we have

|Rh(div vh)|21 = |Rh(div vh) + αqh|21 − 2α
(

Rh(div vh), qh
)

1 − α2|qh|21
≥ |Rh(div vh) + αqh|21 + α(2− 2αC)|q|21 − ∑

T∈Th

h2
T‖div vh‖2

0,T

≥ α|q|21 − ∑
T∈Th

h2
T‖div vh‖2

0,T .

That is,

α|q|21 ≤ |Rh(div vh)|21 + ∑
T∈Th

h2
T‖div vh‖2

0,T .

Finally, we have

‖vh‖2
0 ≤ C

(
‖curl vh‖2

0 + |q|21
)
≤ C max{1, 1/α}

(
‖curl vh‖2

0 + α|q|21
)

≤ C max{1, 1/α}
(
‖curl vh‖2

0 + |Rh(div vh)|21 + ∑
T∈Th

h2
T‖div vh‖2

0,T

)
,

which is the desired (4.6). This completes the proof.

LEMMA 4.2. The following Kh-coercvity/stability holds:

a(vh, vh) ≥ C‖vh‖2
0 ∀ vh ∈ Kh. (4.7)

Proof. For any given vh ∈ Uh, from Proposition 4.1, we have

|||vh|||2h = ‖curl vh‖2
0 + |Rh(div vh)|21 + ∑

T∈Th

h2
T‖div vh‖2

0,T ≥ C‖vh‖2
0 ∀ vh ∈ Uh.

But, noticing that

Kh = {vh ∈ Uh : b(vh, qh) = 0, ∀ qh ∈ Qh} = {vh ∈ Uh : Rh(div vh) = 0}, (4.8)

and that

a(vh, vh) = ‖curl vh‖2
0 + ∑

T∈Th

h2
T‖div vh‖2

0,T ,
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we immediately conclude that (4.7) holds.

THEOREM 4.3. Assume that (Uh, Qh) satisfies the following Babuška-Brezzi inf-sup condition:

sup
vh∈Uh

b(vh, qh)

|||vh|||h
≥ C‖qh‖0 ∀ qh ∈ Qh. (4.9)

Then, for any f ∈ H(div0; Ω) and g ∈ L2(Ω), problem (3.1) admits a unique solution (uh, ph) ∈ Uh ×Qh.

Proof. Firstly, for all vh ∈ Kh, we have from (4.8) Rh(div vh) = 0, and from (4.6) we see that

a(vh, vh) = |||vh|||2h. (4.10)

With (4.9) at hand, the conclusion is just a simple consequence of the classical theory in [17].

From the classical theory [17], consequently, we have the following error estimates:

THEOREM 4.4. Assume that the inf-sup condition (4.9) holds. Let (u, p) denote the exact solution of Maxwell’s
equations (2.3) and (uh, ph) the finite element solution of (3.1) in Uh × Qh. Then for all (vh, qh) ∈ Uh × Qh, we
have

|||u− uh|||h + ‖p− ph‖0 ≤ C
(
|||u− vh|||h + ‖p− qh‖1

)
+ C sup

µh∈Qh

(∇µh, u− vh)

‖µh‖0
. (4.11)

Proof. Adapting the arguments in [17] for proving both Proposition 2.4 on page 54, Proposition 2.5 on
page 55, and Proposition 2.7 on page 56, we can show (4.11). For the sake of completeness, we prove (4.11)
in details. For this purpose, we introduce the set

Kh(g) := {vh ∈ Uh : (vh,∇qh) = −(g, qh), ∀ qh ∈ Qh}. (4.12)

For g = 0, Kh(0) = Kh which is defined by (4.3). Moreover, for any g ∈ L2(Ω), as has been shown by
Theorem 4.3,

Kh(g) 6= ∅. (4.13)

Firstly, we show that

|||u− uh|||h ≤ C
(

inf
wh∈Kh(g)

|||u−wh|||h + inf
qh∈Qh

‖p− qh‖1

)
. (4.14)

We step-by-step follow the argument in proving Proposition 2.4 on page 54 in [17]. In fact, let wh be any
element of Kh(g). Since wh − uh ∈ Kh, from (4.10) we have

C|||wh − uh|||h ≤ sup
zh∈Kh

a(wh − uh, zh)

|||zh|||h
, (4.15)

where

a(wh − uh, zh) = a(wh − u, zh) + a(u− uh, zh),

but, for (u, p) the exact solution and (uh, ph) the finite element solution, from (2.1), (2.5) and (3.1), we find
that

a(u− uh, zh) = −b(zh, p− ph).
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As zh ∈ Kh, for any qh ∈ Qh, from Lemma 4.2, we have

|b(zh, p− ph)| = |b(zh, p− qh)| ≤ ||zh||0||∇(p− qh)||0 ≤ C|||zh|||h||p− qh||1,

and (4.15) becomes

C|||wh − uh|||h ≤ sup
zh∈Kh

a(wh − uh, zh)

|||zh|||h
= sup

zh∈Kh

a(wh − u, zh)− b(zh, p− qh)

|||zh|||h
≤ C(|||u−wh|||h + ||p− qh||1),

(4.16)

and (4.14) follows using the triangle inequality.

Secondly, we use the inf-sup condition (4.9) to show that

inf
wh∈Kh(g)

|||u−wh|||h ≤ C inf
vh∈Uh

(
|||u− vh|||h + sup

µh∈Qh

(∇µh, u− vh)

‖µh‖0

)
. (4.17)

We show (4.17) step-by-step reproducing the argument in proving Proposition 2.5 on page 55 in [17]. Note
that from the inf-sup condition (4.9), similar to (1.15) and (1.16) on page 39 in [17] which result from Propo-
sition 1.2 on the same page, for any th ∈ Uh/Kh, we have

C|||th|||h ≤ sup
µh∈Qh

b(th, µh)

||µh||0
. (4.18)

With (4.18) at hand, we can exactly reproduce the argument in proving Proposition 2.5 on page 55 in [17] to
obtain (4.17). Let vh be any element of Uh. We look for rh ∈ Uh such that

b(rh, µh) = b(u− vh, µh) ∀µh ∈ Qh. (4.19)

With g′ := g + div vh, (4.13) ensures that (4.19) has at least one solution. From Proposition 1.2 on page 39
in [17] and (4.18), we can in fact find a solution satisfying

|||rh|||h ≤ C sup
µh∈Qh

(∇µh, u− vh)

||µh||0
. (4.20)

From (4.19), we also know that wh := rh + vh ∈ Kh(g). Thus, writing

|||u−wh|||h = |||u− vh − rh|||h ≤ |||u− vh|||h + |||rh|||h,

we get directly (4.17) from (4.20).

Thirdly, trivially and exactly, step-by-step reproducing the argument in proving Proposition 2.7 on page
56 in [17], from the inf-sup condition (4.9), we obtain the estimate for p− ph:

‖p− ph‖0 ≤ C
(

inf
qh∈Qh

‖p− qh‖1 + |||u− uh|||h
)

. (4.21)

Hence, from (4.14), (4.17) and (4.21), it follows that (4.11) holds. This completes the proof.

Note that the term ‖p− qh‖1 in the right-hand side of (4.11) cannot be replaced by ‖p− qh‖0, because
the divergence norm ||div · ||0 of vh does not appear in the norm |||vh|||h, while the mesh-dependent di-
vergence norm (∑T∈Th

h2
T ||div · ||0,T)

1/2 in ||| · |||h is too weak.
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FIG. 5.1. (left) P2 elements for uh with the Clough-Tocher refinement, T = ∪3
i=1Ki ; (right) P1 elements for ph.

5. Error estimates of CP2-P1 elements. In this section, we first consider the H1-conforming composite
quadratic elements for uh and the standard P1 elements for ph and then establish the error bound between
the exact solution (u, p) of (2.3) and the finite element solution (uh, ph) of (3.1). Define a sub-mesh Th/2
from the original triangulation Th, by connecting the three vertices of each triangle element to the interior
barycentric point. This is the so-called Clough-Tocher refinement [51], see Figure 5.1. Thus, each T ∈ Th is
the union of three sub-triangle elements in Th/2. We introduce the finite element spaces,

Uh = {vh ∈ (H1(Ω))2 ∩ H0(curl; Ω) : vh|Ki ∈ (P2(Ki))
2, i = 1, 2, 3, ∀ T ∈ Th, T = ∪3

i=1Ki}, (5.1)

Qh = {qh ∈ H1
0(Ω) : qh|T ∈ P1(T), ∀ T ∈ Th}. (5.2)

The pair (Uh, Qh) will be called the CP2-P1 elements in this paper. This finite element pair CP2-P1 is stable,
i.e., the inf-sup condition (4.9) in Theorem 4.3 holds, see Theorem 5.2 below for the verification.

To establish the error bound, we recall that the solution u of (2.1) admits a so-called regular-singular
decomposition:

u = uR +∇pS, (5.3)

where uR is the regular part, belonging to (H1+r(Ω))2 ∩ H0(curl; Ω), and ∇pS is the singular part with
pS ∈ H1+r(Ω) ∩ H1

0(Ω), for some 0 ≤ r ≤ 1. In [27, 30], it is shown that the above decomposition holds in
the case of g = 0. Therefore, it can be expected that if g 6= 0 and g ∈ L2(Ω), the same decomposition would
hold. In fact, we can lift the equation div u = g by a particular solution u0 = ∇ϕ where ϕ ∈ H1

0(Ω) solves
∆ϕ = g in Ω. Then, consider u− u0 that satisfies div (u− u0) = 0 and curl curl (u− u0) = curl curl u. Since
ϕ ∈ H1+r(Ω) by the regularity result for the Dirichlet Laplacian, from the regular-singular decomposition
in the form of (5.3) of u − u0, we still obtain a regular-singular decomposition in the form of (5.3) for u.
Readers may also refer to [23].

Let Wh denote the Hsieh-Clough-Tocher C1 finite element space of H1
0(Ω) ∩ H2(Ω). As is pointed

out in [28], Uh contains the gradient of the Hsieh-Clough-Tocher C1 elements which are of piecewise P3
polynomials, i.e., ∇Wh ⊂ Uh. Readers may refer to [4, 5, 20, 21, 47, 48, 49, 50, 51, 52, 53] for details of C1

elements. Since on each triangle element, Wh consists of piecewise P3 polynomials, it could be shown that
there exists Ah pS ∈Wh, the finite element interpolation of pS, satisfying

‖Ah pS − pS‖0 + h|Ah pS − pS|1 ≤ Ch1+r‖pS‖1+r, (5.4)

∫
F
(Ah pS − pS) = 0 ∀ F ⊂ ∂T, ∀ T ∈ Th. (5.5)



A MIXED H1-CONFORMING FEM FOR SOLVING MAXWELL’S EQUATIONS 11

We remark that both (5.4) and (5.5) can also be satisfied by some C0 elements. For example, the C0 quadratic
element can satisfy (5.4) and (5.5), see Lemma A.3 on page 100 of [43]. More than (5.4) and (5.5), ∇Ah pS ∈
Uh ⊂ (H1(Ω))2. It can be seen that both (5.5) and the fact that Qh contains P1 element only imply(

∇qh,∇(Ah pS − pS)
)
= ∑

T∈Th

∫
∂ T
∇qh · n(Ah pS − pS) = 0 ∀ qh ∈ Qh. (5.6)

Further, from (4.5) and (5.6), we find that(
Rh(div (∇(pS − Ah pS)), qh

)
1 = −

(
∇qh,∇(pS − Ah pS)

)
= 0. (5.7)

Let ΠhuR ∈ Uh denote any classical H1-conforming finite element interpolation [20, 21]. Then we have

‖ΠhuR − uR‖0 + h|ΠhuR − uR|1 ≤ Ch1+r‖uR‖1+r. (5.8)

Since

∇Ah pS ∈ Uh, (5.9)

we denote by

ũh := ΠhuR +∇Ah pS ∈ Uh (5.10)

the finite element interpolation of u. With this ũh, we first have

‖u− ũh‖0 ≤ Chr(‖uR‖1+r + ‖pS‖1+r
)
, (5.11)

‖curl (u− ũh)‖0 = ‖curl (uR −ΠhuR)‖0 ≤ C|uR −ΠhuR|1 ≤ Chr‖uR‖1+r. (5.12)

Moreover, from (4.5), (5.6) and (5.8), we have

|Rh(div (u− ũh))|21 = −
(
∇Rh(div (u− ũh)), u− ũh

)
= −

(
∇Rh(div (u− ũh)), uR −Πhu

)
≤ Ch1+r‖uR‖1+r|Rh(div (u− ũh))|1,

(5.13)

that is,

|Rh(div (u− ũh))|1 ≤ Ch1+r‖uR‖1+r. (5.14)

Hence, we have

‖curl (u− ũh)‖0 + |Rh(div (u− ũh))|1 ≤ Chr‖uR‖1+r. (5.15)

To estimate the term (
∑

T∈Th

h2
T‖div (u− ũh)‖2

0,T

)1/2
, (5.16)

we can follow the same argument in [36] to establish the following result (see Proposition A.1 in the Ap-
pendix of this paper):(

∑
T∈Th

h2
T‖div (u− ũh)‖2

0,T

)1/2
≤ Chr(‖uR‖1+r + ‖pS‖1+r + ‖div u‖0

)
. (5.17)
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Combining (5.15) and (5.17), we have

|||u− ũh|||h ≤ Chr(‖uR‖1+r + ‖pS‖1+r + ‖div u‖0
)
. (5.18)

Furthermore, following the same argument in proving (5.7) and (5.13), with vh := ũh, we find that

sup
µh∈Qh

(∇µh, u− ũh)

‖µh‖0
≤ Chr(‖uR‖1+r + ‖pS‖1+r

)
. (5.19)

In addition, let Ih p ∈ Qh denote any classical H1-conforming finite element interpolation of p, satisfying

‖Ih p− p‖0 + h|Ih p− p|1 ≤ Chr‖p‖1+r. (5.20)

However, since p = 0 in our case, then we just take Ih p = 0, i.e.,

‖p− Ih p‖1 = 0. (5.21)

From Theorem 4.4, therefore, we obtain the following error bound:

THEOREM 5.1. Let (u, p = 0) denote the exact solution of Maxwell’s equations (2.3) and (uh, ph) the solution
of problem (3.1) using CP2-P1 elements. Assume that the regular-singular decomposition (5.3) holds. Then we have

|||u− uh|||h + ‖p− ph‖0 ≤ Chr(‖uR‖1+r + ‖pS‖1+r + ‖div u‖0
)
. (5.22)

Note that by the triangle inequality, (5.11), (4.6), (5.22) and (5.18), we can further obtain

‖u− uh‖0 ≤ C(‖u− ũ‖0 + ‖ũ− uh‖0) ≤ Chr(‖uR‖1+r + ‖pS‖1+r + ‖div u‖0
)
. (5.23)

In what follows, we turn to verify the fact that the CP2-P1 elements satisfy the Babuška-Brezzi inf-sup
condition (4.9) as stated in Theorem 4.3. For that goal, we consider the following problem: for any given
qh ∈ Qh, find θ ∈ H1

0(Ω) such that

−∆θ = qh in Ω, θ = 0 on ∂Ω.

It is known that

θ ∈ H1+r(Ω), v∗ = ∇θ ∈ (Hr(Ω))2, r ≥ 0,
−div v∗ = qh,

‖v∗‖s + ‖div v∗‖0 ≤ C‖qh‖0 0 ≤ s ≤ r.

Note that r > 1
2 for Lipschitz polygons. Put v∗h = ∇(Ahθ). Both (5.6) and (5.7) lead to

(v∗ − v∗h,∇qh) = 0 ∀ qh ∈ Qh,

that is,

b(v∗h − v∗, qh) = 0 ∀ qh ∈ Qh.

Thus,

b(v∗h, qh) = b(v∗h − v∗, qh) + b(v∗, qh) = b(v∗, qh) = (v∗,∇qh) = −(div v∗, qh) = ‖qh‖2
0,

|||v∗h|||h =
(

∑
T∈Th

h2
T‖div v∗h‖

2
0,T

) 1
2
+ |Rh(div v∗h)|1 ≤ C‖v∗h‖0 ≤ C‖θ‖1 ≤ C‖qh‖0,
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FIG. 5.2. (left) P1 elements for uh with the Powell-Sabin refinement, T = ∪6
i=1Ki ; (right) P1 elements for ph.

where we have used the element local inverse estimates in [20, 21], |v∗h|1,T ≤ Ch−1
T ‖v∗h‖0,T for all T ∈ Th,

and the boundedness of the H1-projection Rh, i.e., |Rh(div v∗h)|1 ≤ ‖v
∗
h‖0. Combining these we obtain

sup
vh∈Uh

b(vh, qh)

|||vh|||h
≥

b(v∗h, qh)

|||v∗h|||h
≥ C‖qh‖0.

The conclusion is stated as follows:

THEOREM 5.2. For CP2-P1 elements, we have the Babuška-Brezzi inf-sup condition,

sup
vh∈Uh

b(vh, qh)

|||vh|||h
≥ C‖qh‖0 ∀ qh ∈ Qh. (5.24)

We conclude this section with remarks on the finite elements CP1-P1 and P2-P1, and Maxwell’s eigen-
value problems.

REMARK 5.3. Theorem 5.1 and Theorem 5.2 are still valid for similar finite element spaces such as the CP1-P1
elements with the Powell-Sabin refinement [51] of the original triangulation. The related C1 elements on the Powell-
Sabin meshes are piecewise P2 polynomials; see [47, 48, 49, 50, 51, 52, 53] for more C1 elements on composite meshes.
Let Th be a triangulation, and suppose that for each triangle T, c denotes its incenter. For each triangle T, connect c
to each of the three vertices of T. Connect c and c′ by a straight line whenever the triangles T and T′ share a common
edge. In addition, connect the middle of each boundary edge to the incenter of the associated triangle, see Figure 5.2.
Now, define the CP1-P1 finite element spaces Uh and Qh by

Uh = {vh ∈ H0(curl; Ω) ∩ (H1(Ω))2 : vh|Ki ∈ (P1(Ki))
2, i = 1, 2, · · · , 6, ∀ T ∈ Th, T = ∪6

i=1Ki},
Qh = {qh ∈ H1

0(Ω) : qh|T ∈ P1(T), ∀ T ∈ Th}.

REMARK 5.4. In Section 6, we have performed numerical experiments for the P2-P1 elements, which are well-
known as Taylor-Hood elements [8, 17, 43] in computational fluid dynamics. Since (3.1) is close to the Stokes equa-
tions, it would be interesting to use these elements. For P2-P1 elements, however, it seems that the argument for
establishing Theorem 5.1 and Theorem 5.2 could not longer be valid, and both theorems seem not to be true. Never-
theless, numerical results reported in Section 6 support that such P2-P1 elements can be used for seeking the finite
element solution of a non-H1 very weak solution, with the desired convergence order r.

REMARK 5.5. The proposed mixed H1-conforming FEM (3.1) can be straightforwardly applied to Maxwell’s
eigenvalue problems. Although we have not analyzed the eigenvalue problem, the numerical results reported in Sec-
tion 6 show that the present method can indeed work for solving the eigenvalue problem. We will see that the computed
convergence rate of the eigenvalue is about the twice of that of the regularity of the corresponding non-H1 eigenfunc-
tion, i.e., if the error bound for the source problem is O(hr), then the error bound for eigenvalues is O(h2r), as is
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FIG. 6.1. Typical uniform triangular meshes with h = 1/4: (left) square domain, (middle) L-shaped domain, and (right) cracked domain.

classical for the eigenvalue problem with compact operator [6, 9, 11, 12, 57]. An intuitive observation is that in the
present method, it may still provide a compact operator, by noting that the bilinear form in the method is actually
(curl u, curl v) + (Rh(div u), Rh(div v))1 + ∑T∈Th

h2
T(div u, div v)0,T . This bilinear form is quite like the one in

[37] where the eigenvalue problem is studied. However, a strict theory needs to be developed, since a method which is
efficient for the source problem may not be for the eigenvalue problem [9]. For the Maxwell equations, there are many
theories available. The relevant theory can be found in [11, 12, 37]. We may adapt the argument therein to the method
here, but more investigations have to be further carried out.

6. Numerical experiments. In this section, we will illustrate the high performance of the proposed
mixed H1-conforming FEM (3.1) by considering some typical examples in the literature. The numerical
experiments will be divided into two parts, one for source problems and the other for eigenvalue prob-
lems. In each part, we will consider the CP1-P1, CP2-P1 and P2-P1 elements associated with the uniform
triangulation Th, which is composed of uniform triangles. The uniform triangular meshes employed in the
computation are drawn in Figure 6.1. Notice that for the P2-P1 elements, we have no convergence like The-
orem 5.1 and stability like Theorem 5.2, but numerical results show that such finite elements can perform
almost the same well as the CP1-P1 and CP2-P1 elements. We consider three domains: square, L-shaped
domain, and cracked domain. The former two are Lipschitz domains, while the latter is not. Although
theoretical results are obtained for Lipschitz domains, the numerical results show that they also hold for
non-Lipschitzian cracked domain.

6.1. Source problems for Maxwell’s equations. In this subsection, we consider three examples.

Example 6.1.1 (A smooth solution problem). In order to test the validity of the proposed mixed H1-
conforming FEM (3.1), we first consider Maxwell’s equations on the square domain Ω := (−1, 1)× (−1, 1),
see the left part of Figure 6.1, with the smooth exact solution u = (u1, u2) given by

u1(x, y) = sin(2πy) sin2(πx), u2(x, y) = sin(2πx) sin2(πy),

and p(x, y) = 0. Substituting the exact solution pair (u, p) into (2.3), we have the source terms f , with
div f = 0, and g. We perform the proposed mixed H1-conforming FEM (3.1) using the three different finite
elements, i.e., CP1-P1, CP2-P1 and P2-P1 elements. The numerical results are reported in Tables 6.1–6.3.

From the numerical results we can find that for this smooth solution problem, the convergence of uh
using the CP1-P1 elements are second order in the L2 norm and first order in the H(curl) norm, while the
convergence are third order in the L2 norm and second order in the H(curl) norm when we employ the
CP2-P1 elements. However, the L2 convergence rate of uh is only two, less than the optimal order three,
when we use the P2-P1 elements. In all these cases, the convergence rates of the dummy variable ph are
much higher than the prediction. The elevation plots of the finite element solutions with h = 1/32 are
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TABLE 6.1
Error behavior of the smooth solution problem using CP1-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

3.7489E-03 9.2910E-04 2.3157E-04 5.7825E-05 1.4424E-05

Rate − 2.01 2.00 2.00 2.00
‖p− ph‖0 4.6464E-04 3.3096E-05 2.9421E-06 3.1971E-07 2.4014E-08

Rate − 3.81 3.49 3.20 3.23
‖u− uh‖H(curl)

‖u‖H(curl)
4.3780E-02 2.1890E-02 1.0945E-02 5.4726E-03 2.7363E-03

Rate − 1.00 1.00 1.00 1.00
‖p− ph‖1 7.0187E-03 9.3155E-04 1.5419E-04 2.6812E-05 3.3609E-06

Rate − 2.91 2.59 2.52 3.00

TABLE 6.2
Error behavior of the smooth solution problem using CP2-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

1.2525E-03 1.7850E-04 2.3235E-05 2.9375E-06 3.7103E-07

Rate − 2.81 2.94 2.98 2.99
‖p− ph‖0 7.3168E-05 1.6152E-06 3.2795E-08 7.5273E-10 2.1786E-11

Rate − 5.50 5.62 5.45 5.11
‖u− uh‖H(curl)

‖u‖H(curl)
2.9156E-03 7.0103E-04 1.7441E-04 4.3582E-05 1.0877E-05

Rate − 2.06 2.01 2.00 2.00
‖p− ph‖1 1.1112E-03 5.4088E-05 3.2996E-06 2.0697E-07 1.3026E-08

Rate − 4.36 4.03 3.99 3.99

given in Figures 6.2–6.4.

Example 6.1.2 (The L-shaped domain problem). We now consider Maxwell’s equations with a non-H1

singular solution on an L-shaped domain Ω := (−1, 1)2\([0, 1)× (−1, 0]), see the middle part of Figure 6.1.
The singular solution u is given by

u(x, y) = ∇
(
(1− x2)(1− y2)ϕ(x, y)

)
and the multiplier p is identically equal to zero, where x = ρ cos θ, y = ρ sin θ, ϕ(x, y) = ρ2/3 sin( 2

3 θ),
and ρ is the distance to the origin and θ is the angular coordinate varying form 0 to 3π/2. One can check
that the exact solution u has a strong unbounded singularity at the origin, and it satisfies the homoge-
neous tangential boundary condition, u · τ = 0 on Γ. Since ϕ ∈ H5/3−ε(Ω) for any ε > 0, it follows that
u ∈ (H2/3−ε(Ω))2 (cf. [35] and references cited therein). In other words, we have r ≈ 0.67 in Theorem 5.1.

We now perform the mixed H1-conforming FEM (3.1) using the CP1-P1, CP2-P1 and P2-P1 elements.
The numerical results are reported in Tables 6.4–6.6, which support the theoretical analysis. Although
many convergence rates of uh presented in Tables 6.4–6.6 are decreasing as h → 0+, all convergence rates
apparently tend to a limiting value, which is slightly higher than the theoretical estimates. Moreover, from
the numerical results we can find that if the method (3.1) employs the P2-P1 elements, both the accuracy of
uh in the H(curl) norm and ph in the H1 norm are apparently worse than the accuracy of that using CP1-P1
and CP2-P1 elements. Finally, we plot the finite element solutions using these three different finite elements
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TABLE 6.3
Error behavior of the smooth solution problem using P2-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

2.6553E-03 6.5576E-04 1.6343E-04 4.0827E-05 1.0205E-05

Rate − 2.02 2.00 2.00 2.00
‖p− ph‖0 4.9886E-04 3.0360E-05 1.9076E-06 1.2300E-07 8.2867E-09

Rate − 4.04 3.99 3.96 3.89
‖u− uh‖H(curl)
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Rate − 2.01 2.00 2.00 2.00
‖p− ph‖1 5.6721E-03 4.7483E-04 8.1603E-05 1.7017E-05 3.4913E-06

Rate − 3.58 2.54 2.26 2.29
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FIG. 6.2. Elevation plots of the CP1-P1 finite element solutions uh = (u1h, u2h) and ph with h = 1/32 of the smooth solution problem.
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FIG. 6.3. Elevation plots of the CP2-P1 finite element solutions uh = (u1h, u2h) and ph with h = 1/32 of the smooth solution problem.
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TABLE 6.4
Error behavior of the L-shaped domain problem using CP1-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

3.7291E-02 1.9586E-02 1.1093E-02 6.6392E-03 4.0167E-03

Rate − 0.93 0.82 0.74 0.72
‖p− ph‖0 2.1864E-02 9.1305E-03 3.7079E-03 1.4881E-03 5.9407E-04

Rate − 1.26 1.30 1.32 1.32
‖u− uh‖H(curl)

‖u‖H(curl)
5.3043E-02 2.4288E-02 1.2228E-02 6.8028E-03 4.0444E-03

Rate − 1.13 0.99 0.85 0.75
‖p− ph‖1 3.5989E-01 2.3527E-01 1.5021E-01 9.5089E-02 6.0012E-02

Rate − 0.61 0.65 0.66 0.66

TABLE 6.5
Error behavior of the L-shaped domain problem using CP2-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

2.8975E-02 1.6281E-02 9.6914E-03 5.9559E-03 3.7139E-03

Rate − 0.83 0.75 0.70 0.68
‖p− ph‖0 1.3943E-02 5.8502E-03 2.3879E-03 9.6222E-04 3.8520E-04

Rate − 1.25 1.29 1.31 1.32
‖u− uh‖H(curl)

‖u‖H(curl)
3.6256E-02 1.7115E-02 8.9772E-03 5.1533E-03 3.1161E-03

Rate − 1.08 0.93 0.80 0.73
‖p− ph‖1 1.8779E-01 1.2100E-01 7.6870E-02 4.8579E-02 3.0640E-02

Rate − 0.63 0.65 0.66 0.66

with h = 1/32 in Figures 6.5–6.7.

Example 6.1.3 (The cracked domain problem). In this example, we take a cracked domain which is
defined as Ω := (−1, 1)2\{(x, y) ∈ R2| 0 ≤ x < 1, y = 0}, see the right part of Figure 6.1, and choose the
exact solution u to be

u(x, y) = ∇
(
(1− x2)(1− y2)ϕ(x, y)

)
and the multiplier p is identically equal to zero, where ϕ(x, y) = ρ1/2 sin( 1

2 θ) and θ is varying form 0 to 2π.
In this case, since ϕ ∈ H3/2−ε(Ω) for any ε > 0, we have u ∈ (H1/2−ε(Ω))2 (cf. [35] and references cited
therein). That is, we have r ≈ 0.5 in Theorem 5.1.

Numerical results of the proposed method (3.1) using CP1-P1, CP2-P1 and P2-P1 elements are collected
in Tables 6.7–6.9 and Figures 6.8–6.10, which support the theoretical analysis for the CP1-P1 and CP2-P1 el-
ements, both with convergence rates higher than the predicted value 0.5; unexpectedly, P2-P1 element also
exhibits almost the same convergence rate for u.

6.2. Eigenvalue problems for Maxwell’s equations. In this subsection, we consider the Maxwell eigen-
value problem which can be posed as follows: find ω2 ∈ R and u 6= 0 such that

curl curl u = ω2u, div u = 0 in Ω, u · τ = 0 on Γ.
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TABLE 6.6
Error behavior of the L-shaped domain problem using P2-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

3.0874E-02 1.6989E-02 9.8638E-03 5.9899E-03 3.6872E-03

Rate − 0.86 0.78 0.72 0.70
‖p− ph‖0 2.0037E-02 9.4706E-03 4.2856E-03 1.8732E-03 8.0413E-04

Rate − 1.08 1.14 1.19 1.22
‖u− uh‖H(curl)

‖u‖H(curl)
6.5406E-02 3.8450E-02 2.2340E-02 1.2944E-02 7.4861E-03

Rate − 0.77 0.78 0.79 0.79
‖p− ph‖1 2.8144E-01 2.6557E-01 2.4083E-01 2.0707E-01 1.6703E-01

Rate − 0.08 0.14 0.22 0.31

1-1

-2

0

x y

Finite element solution u
1h

0 0

2

-11

-1 1

-2

0

yx

Finite element solution u
2h

0 0

2

1 -1

-0.1
1-1

0

Finite element solution p
h

x y

00

0.1

1 -1

FIG. 6.5. Elevation plots of the CP1-P1 finite element solutions uh = (u1h, u2h) and ph with h = 1/32 of the L-shaped domain problem.
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FIG. 6.6. Elevation plots of the CP2-P1 finite element solutions uh = (u1h, u2h) and ph with h = 1/32 of the L-shaped domain problem.
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TABLE 6.7
Error behavior of the cracked domain problem using CP1-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

3.0383E-01 2.0086E-01 1.2162E-01 7.0411E-02 4.1290E-02

Rate − 0.60 0.72 0.79 0.77
‖p− ph‖0 1.7499E-01 1.1456E-01 6.7483E-02 3.6999E-02 1.9419E-02

Rate − 0.61 0.76 0.87 0.93
‖u− uh‖H(curl)

‖u‖H(curl)
4.3995E-01 2.8772E-01 1.7134E-01 9.6502E-02 5.3910E-02

Rate − 0.61 0.75 0.83 0.84
‖p− ph‖1 1.4547E+00 1.3524E+00 1.1279E+00 8.7478E-01 6.6296E-01

Rate − 0.11 0.26 0.37 0.40

TABLE 6.8
Error behavior of the cracked domain problem using CP2-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

2.5677E-01 1.6279E-01 9.6385E-02 5.5772E-02 3.2798E-02

Rate − 0.66 0.76 0.79 0.77
‖p− ph‖0 1.4400E-01 9.0576E-02 5.1721E-02 2.7799E-02 1.4436E-02

Rate − 0.67 0.81 0.90 0.95
‖u− uh‖H(curl)

‖u‖H(curl)
3.6847E-01 2.3034E-01 1.3329E-01 7.4336E-02 4.1458E-02

Rate − 0.68 0.79 0.84 0.84
‖p− ph‖1 1.6020E+00 1.4161E+00 1.1397E+00 8.6479E-01 6.3452E-01

Rate − 0.18 0.31 0.40 0.45

Introducing the dummy variable p, the above eigenvalue problem can be put into the following mixed form

curl curl u +∇p = ω2u, div u = 0 in Ω, u · τ = 0, p = 0 on Γ,

and the variational problem reads: find ω2 ∈ R and 0 6= u ∈ H0(curl; Ω), p ∈ H1
0(Ω) such that

(curl u, curl v) + (∇p, v) + (u,∇q) = ω2(u, v) ∀ v ∈ H0(curl; Ω), ∀ q ∈ H1
0(Ω).

The mixed H1-conforming stabilized FEM is then formulated as: find ω2
h ∈ R and 0 6= uh ∈ Uh, ph ∈ Qh

such that

(curl uh, curl vh) + ∑
T∈Th

h2
T(div uh, div vh)0,T + (∇ph, vh) + (uh,∇qh)

= ω2
h(uh, vh) ∀ vh ∈ Uh, ∀ qh ∈ Qh.

We first consider the eigenvalue problem on the L-shaped domain Ω := (−1, 1)2\([0, 1)× (−1, 0]). We
will take the nonzero eigenvalues provided by Monique Dauge at her personal webpage

http://perso.univ-rennes1.fr/monique.dauge/benchmax.html

as the benchmark. For example, the first two nonzero eigenvalues given there are

ω2
1 = 1.47562182408 and ω2

2 = 3.53403136678.
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TABLE 6.9
Error behavior of the cracked domain problem using P2-P1 elements

1/h 16 32 64 128 256
‖u− uh‖0
‖u‖0

3.4891E-01 2.7031E-01 1.8801E-01 1.1878E-01 7.0781E-02

Rate − 0.37 0.52 0.66 0.75
‖p− ph‖0 2.0740E-01 1.6185E-01 1.1152E-01 6.8533E-02 3.8660E-02

Rate − 0.36 0.54 0.70 0.83
‖u− uh‖H(curl)

‖u‖H(curl)
5.2711E-01 4.0705E-01 2.8046E-01 1.7416E-01 1.0075E-01

Rate 0.37 0.54 0.69 0.79
‖p− ph‖1 3.9209E+00 5.9934E+00 8.2002E+00 1.0050E+01 1.1324E+01

Rate − -0.61 -0.45 -0.29 -0.17
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FIG. 6.8. Elevation plots of the CP1-P1 finite element solutions uh = (u1h, u2h) and ph with h = 1/32 of the cracked domain problem.
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FIG. 6.9. Elevation plots of the CP2-P1 finite element solutions uh = (u1h, u2h) and ph with h = 1/32 of the cracked domain problem.
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TABLE 6.10
Relative errors of the eigenvalues of the L-shaped domain problem using CP1-P1 elements

ω2 1/h ω2
h |ω2 −ω2

h|/|ω
2| Rate

16 1.94500948373 3.1809E-01 −
32 1.67437602654 1.3469E-01 1.24

1.47562182408 64 1.55659198774 5.4872E-02 1.30
128 1.50809033821 2.2003E-02 1.32
256 1.48855985029 8.7678E-03 1.33

16 3.53798759701 1.1195E-03 −
32 3.53473810678 1.9998E-04 2.48

3.53403136678 64 3.53416098758 3.6678E-05 2.45
128 3.53405625089 7.0413E-06 2.38
256 3.53403639898 1.4239E-06 2.31

TABLE 6.11
Relative errors of the eigenvalues of the L-shaped domain problem using CP2-P1 elements

ω2 1/h ω2
h |ω2 −ω2

h|/|ω
2| Rate

16 1.77285558616 2.0143E-01 −
32 1.59849880463 8.3271E-02 1.27

1.47562182408 64 1.52518554833 3.3588E-02 1.31
128 1.49541776405 1.3415E-02 1.32
256 1.48349772085 5.3373E-03 1.33

16 3.53530808872 3.6127E-04 −
32 3.53423550577 5.7764E-05 2.64

3.53403136678 64 3.53406364542 9.1337E-06 2.66
128 3.53403645567 1.4400E-06 2.67
256 3.53403216843 2.2684E-07 2.67

The corresponding eigenfunctions are u1 ∈ (H2/3−ε(Ω))2 and u2 ∈ (H4/3−ε(Ω))2, for any ε > 0 (cf. [29]).
we remark that the convergence rate of the nonzero finite element eigenvalue ω2

h to ω2 is depending on the
regularity of the associated eigenfunction u and the degree of the finite elements employed. The numerical
results of the CP1-P1, CP2-P1 and P2-P1 elements are presented in Tables 6.10–6.12. One can find that our
method can approximate the eigenvalues very well, consistent with Remark 5.5. Moreover, we can accu-
rately approximate the other three nonzero eigenvalues given by Monique Dauge as well.

Next, we consider the eigenvalue problem on the cracked domain Ω := (−1, 1)2\{(x, y) ∈ R2| 0 ≤
x < 1, y = 0}. Again, we take the first four nonzero eigenvalues from Monique Dauge’s webpage as the
benchmark as follows:

ω2
1 = 1.03407400850, ω2

2 = 2.46740110027, ω2
3 = 4.04692529140, ω2

4 = 9.86960440109.

Note that the second and fourth eigenvalues are π2/4 and π2 respectively, whose eigenfunctions are
smooth analytical functions. The corresponding eigenfunctions are given by u1 ∈ (H1/2−ε(Ω))2 for any
ε > 0 and u2, u4 ∈ (H1(Ω))2. The regularity of u3 is not known, but our numerical results show that
u3 ∈ (H3/2−ε(Ω))2. Numerical results of the CP1-P1, CP2-P1 and P2-P1 elements are reported in Tables
6.13–6.15. We remark that we can also accurately approximate the other six nonzero eigenvalues given by
Monique Dauge.

We also note that there are somewhat different convergent behaviours between the L-shaped domain
and the cracked domain. But, so far, the reason is not known.
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TABLE 6.12
Relative errors of the eigenvalues of the L-shaped domain problem using P2-P1 elements

ω2 1/h ω2
h |ω2 −ω2

h|/|ω
2| Rate

16 2.10697896768 4.2786E-01 −
32 1.76373963076 1.9525E-01 1.13

1.47562182408 64 1.59714914007 8.2357E-02 1.25
128 1.52507568731 3.3514E-02 1.30
256 1.49544665026 1.3435E-02 1.32

16 3.53919639898 1.4615E-03 −
32 3.53492549776 2.5301E-04 2.53

3.53403136678 64 3.53417588022 4.0892E-05 2.63
128 3.53405428048 6.4837E-06 2.66
256 3.53403498178 1.0229E-06 2.66

TABLE 6.13
Relative errors of the eigenvalues of the cracked domain problem using CP1-P1 elements

ω2 1/h ω2
h |ω2 −ω2

h|/|ω
2| Rate

16 2.28295406910 1.2077E+00 −
1.03407400850 32 1.71321531554 6.5676E-01 0.88

64 1.38849238184 3.4274E-01 0.94
128 1.21514601176 1.7511E-01 0.97

16 2.46771253012 1.2622E-04 −
2.46740110027 32 2.46747809341 3.1204E-05 2.02

64 2.46742029475 7.7792E-06 2.00
128 2.46740589552 1.9434E-06 2.00

16 4.04851577464 3.9301E-04 −
4.04692529140 32 4.04722883713 7.5007E-05 2.39

64 4.04698906500 1.5759E-05 2.25
128 4.04693971174 3.5633E-06 2.14

16 9.87458325214 5.0446E-04 −
9.86960440109 32 9.87083605716 1.2479E-04 2.02

64 9.86991149812 3.1115E-05 2.00
128 9.86968112436 7.7737E-06 2.00

7. Concluding remarks. In this paper, we have proposed a mixed H1-conforming FEM for solving
Maxwell’s equations in the vector potential form with non-H1 singular solutions. The occurrence of sin-
gular solution is mainly due to the non-convex physical domain with reentrant corners or edges, and this
causes many difficulties for numerical solution. The Maxwell equations is formulated in terms of electric
field and Lagrange multiplier, where the multiplier is additionally introduced accounting for the divergence
constraint. We have provided a general framework of stability and error analysis for the proposed mixed
H1-conforming FEM by verifying the Kh-coercivity and the Babuška-Brezzi inf-sup condition. We have an-
alyzed a specific pair of H1-conforming finite elements, namely the CP2-P1 elements, for electric field and
multiplier, and have also established the stability and error bounds of the mixed finite element solutions. To
illustrate the high performance of the proposed FEM, we have presented some numerical experiments for
source problems as well as eigenvalue problems on L-shaped and cracked domains. The numerical results
confirm the theoretical estimates. Finally, we remark that the proposed mixed H1-conforming FEM can
be applied to solving Maxwell’s equations in 3D with non-H1 singular solutions as well. Similar Clough-
Tocher and Powell-Sabin refinements in 3D are available, see, e.g., [4, 47, 51, 53], and the regular-singular
decompositions similar to (5.3) may be found in [27, 28].



A MIXED H1-CONFORMING FEM FOR SOLVING MAXWELL’S EQUATIONS 23

TABLE 6.14
Relative errors of the eigenvalues of the cracked domain problem using CP2-P1 elements

ω2 1/h ω2
h |ω2 −ω2

h|/|ω
2| Rate

16 1.89476337739 8.3233E-01 −
1.03407400850 32 1.48919574044 4.4012E-01 0.92

64 1.26819358462 2.2641E-01 0.96
128 1.15282009449 1.1483E-01 0.98
16 2.46740118334 3.3667E-08 −

2.46740110027 32 2.46740110522 2.0082E-09 4.07
64 2.46740110058 1.2641E-10 3.99

128 2.46740110027 5.2735E-14 11.23
16 4.04720868130 7.0026E-05 −

4.04692529140 32 4.04696134468 8.9088E-06 2.97
64 4.04692981875 1.1187E-06 2.99

128 4.04692585796 1.4000E-07 3.00
16 9.86960969039 5.3592E-07 −

9.86960440109 32 9.86960471776 3.2086E-08 4.06
64 9.86960442060 1.9764E-09 4.02

128 9.86960440228 1.2051E-10 4.04

TABLE 6.15
Relative errors of the eigenvalues of the cracked domain problem using P2-P1 elements

ω2 1/h ω2
h |ω2 −ω2

h|/|ω
2| Rate

16 2.87805387607 1.7832E+00 −
1.03407400850 32 2.16440461011 1.0931E+00 0.71

64 1.66910377875 6.1410E-01 0.83
128 1.37213197183 3.2692E-01 0.91

16 2.46740129336 7.8257E-08 −
2.46740110027 32 2.46740111224 4.8529E-09 4.01

64 2.46740110102 3.0448E-10 3.99
128 2.46740110033 2.3008E-11 3.73

16 4.04833330870 3.4792E-04 −
4.04692529140 32 4.04712863043 5.0245E-05 2.79

64 4.04695179961 6.5502E-06 2.94
128 4.04692864450 8.2856E-07 2.98

16 9.86961672238 1.2484E-06 −
9.86960440109 32 9.86960516667 7.7569E-08 4.01

64 9.86960444887 4.8407E-09 4.00
128 9.86960440408 3.0324E-10 4.00

Appendix. In this section, the proof for the error estimate (5.17) is given.

PROPOSITION A.1. Let u be given by (5.3). Assume that u ∈ (Hr(Ω))2 for some r > 1/2. Additionally,
assume that div u ∈ L2(Ω). Let ũh ∈ Uh be given by (5.10). Then,

∑
T∈Th

hT
2‖div (u− ũh)‖2

0,T ≤ Ch2r(‖uR‖2
1+r + ‖pS‖2

1+r + ‖div u‖2
0
)
.
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Proof. We first introduce the nonconforming linear element [31] and recall the finite element interpola-
tion properties. Introduce

Vh =
{

v ∈ (L2(Ω))2 : v|T ∈ (P1(T))2, ∀ T ∈ Th, v continuous at all mid-points of element

boundaries in Ω, v · τ = 0 at all mid-points of element boundaries on Γ
}

.

Let Jhu ∈ Vh denote the finite element interpolation of u in Vh, which is defined by∫
F

Jhu =
∫

F
u ∀ F ⊂ ∂T, ∀ T ∈ Th.

Let ρh denote the piecewise constant L2 projection operator, i.e., given a χ ∈ L2(Ω), ρhχ|T =
∫

T χ/|T| for
all T ∈ Th, where |T| is the area of T. We have for all T ∈ Th,

curl (Jhu|T) = (ρhcurl u)T , div (Jhu|T) = (ρhdiv u)|T , ‖u− Jhu‖0 ≤ Chr‖u‖r,
‖curl (u− Jhu)‖0,T ≤ 2‖curl u‖0,T , ‖div (u− Jhu)‖0,T ≤ 2‖div u‖0,T .

By the triangle inequality, inverse estimates in [21], we have

h2
T‖div (u− ũh)‖2

0,T ≤ 2h2
T
(
‖div (u− Jhu)‖2

0,T + ‖div (Jhu− ũh)‖2
0,T
)

≤ 8h2
T‖div u‖2

0,T + 2h2
T‖div (ũh − Jhu)‖2

0,T

≤ 8h2
T‖div u‖2

0,T + C‖ũh − Jhu‖2
0,T

≤ 8h2
T‖div u‖2

0,T + C‖ũh − u‖2
0,T + C‖u− Jhu‖2

0,T .

Summing over Th, the conclusion follows, by noting (5.11) and ‖u− Jhu‖0 ≤ Chr‖u‖r and that from (5.3),
we have ‖u‖r ≤ C(‖uR‖1+r + ‖pS‖1+r).

Acknowledgments. The authors would like to thank the anonymous referees for their valuable com-
ments and suggestions that led to a substantial improvement of the original manuscript.

REFERENCES

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods
Appl. Sci., 21 (1998), pp. 823-864.
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