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Abstract. In [21, Doc. Math. 21, 2016] the current authors calculated ex-

plicitly the number of isomorphism classes of superspecial abelian surfaces over
any finite field of odd degree over the prime field Fp. The method reduces the

calculation to the prime field case, and calculates the number of isomorphism
classes in each isogeny class through a lattice description. In the present paper

we treat the even degree cases. This complements our earlier results and com-

pletes the explicit calculation of superspecial abelian surfaces. Our method
reduces the calculation to a seemingly unrelated problem on conjugacy classes

of finite order in arithmetic subgroups, which may be of interest in its own

right.

1. Introduction

Throughout this paper, p denotes a prime number and q is a power of p. An
abelian variety over a field k of characteristic p is said to be supersingular if it is
isogenous to a product of supersingular elliptic curves over an algebraic closure k̄
of k; it is said to be superspecial if it is isomorphic to a product of supersingu-
lar elliptic curves over k̄. As any supersingular abelian variety is isogenous to a
superspecial abelian variety, it is common to study supersingular abelian varieties
through investigating the superspecial abelian varieties.

Our goal is to calculate explicitly the number of superspecial abelian surfaces
over any finite field. This is motivated by the search for natural generalizations
of known explicit results of elliptic curves over finite fields to abelian surfaces,
especially from supersingular elliptic curves to supersingular abelian surfaces. Thus,
studying superspecial abelian surfaces becomes a vital step for this purpose.

In [21] we calculated explicitly the number of superspecial abelian surfaces over
any finite field Fq of odd degree over Fp. This extended our earlier works [19, 20]
and [23] contributed to the study of superspecial abelian varieties over finite fields.
In this paper we treat the even degree case. Thus, this complements the results in
loc. cit. and completes the explicit calculation of superspecial abelian surfaces over
any finite field.

A key step in [21] is the reduction to the case where the ground field is a prime
finite field. This step is achieved by a Galois cohomology argument. Then we
calculate case-by-case the number of superspecial abelian surfaces in each isogeny
class over Fp. This approach works fine when the field Fq of odd degree because we
have an explicit lattice description for abelian varieties over Fp. When the degree
[Fq : Fp] is even, the Galois cohomology argument unfortunately yields no immedi-
ate simplification. However, it leads us to a seemingly unrelated problem, which is
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important but is equally challenging, on counting conjugacy classes of elements of
finite order in arithmetic subgroups. The connection itself is quite straight forward,
though it is applicable to a quite general setting; see Proposition 1.1.

For any group G, we denote by ClG the set of conjugacy classes of G and
Cl0G ⊂ ClG the subset of classes of elements of finite order. Let D = Dp,∞ be the
definite quaternion Q-algebra ramified exactly at p and∞, and O a maximal order
in D.

Proposition 1.1. Let Fq be any finite field containing Fp2 and d any integer strictly
greater than 1. Then the set of Fq-isomorphism classes of d-dimensional superspe-
cial abelian varieties over Fq is in bijection with the set Cl0G with G = GLd(O).

By a classical result of Eichler [3], if d > 1, then the class number of Md(O)
is equal to one. Thus, for d ≥ 2, any maximal arithmetic subgroup in GLd(D)
is conjugate to GLd(O) by an element in GLd(D) and Proposition 1.1 does not
depend on the choice of the maximal order O. The main result of this paper is the
following (see Theorem 3.2 our precise formula), which calculates the number of
superspecial abelian surfaces over Fq ⊃ Fp2 by mean of Proposition 1.1.

Theorem 1.2. There is an explicit formula for the cardinality of Cl0 GL2(O).

The strategy of the calculation and detailed formulas are described in Section 3.
The calculation involves class numbers of certain (possibly non-maximal) orders in
the subalgebras of Mat2(D) which are the centralizers of elements of finite order.
The expression looks familiar with the geometric side of a trace formula but we
have no idea for this aspect.

This paper is organized as follows. In Section 2, we provide a rather preliminary
account on conjugacy classes of finite orders of groups due to the author’s limited
knowledge. A proof of Proposition 1.1 is given in this section. Section 3 describes
the main results of this paper. The remainder of this paper is to fill the details of
the computation in Theorem 1.2.

2. Conjugacy classes of elements of finite order

In this section we provide a preliminary account of conjugacy classes of elements
of finite orders of groups.

2.1. Preliminaries. For any group G, we denote by ClG the set of conjugacy
classes of G and Cl0G ⊂ ClG the subset of classes of elements of finite order in G.
It is a basic question to ask whether Cl0G is finite, how to calculate its cardinality
if it is finite, or whether there are any connections of Cl0G with other objects of
interest. If G is finite, then Cl0G = ClG is finite and the cardinality is equal to
the number of mutually non-isomorphic complex irreducible representations of G,
which are necessarily finite-dimensional.

In general, Cl0G may not be finite. For example, if G is an abelian group,
then Cl0G = Gtors is the torsion subgroup which can certainly be infinite. In the
special case G = C×, Gtors is the subgroup of all roots of unity, which has rich
arithmetic properties. On the other hand, suppose G is a connected compact Lie
group. Choose a maximal torus T of G. Since any element of G is contained in a
maximal torus and any two maximal tori are conjugate under G, the set ClG then
is in bijection with the quotient T/W , where W is the Weyl group of G relative
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to T , and we have Cl0G ' Ttors/W . Suppose G = GLn(F ), where F is any field,
then ClG can be parametrized explicitly by rational Jordan canonical forms.

Another interesting type of groups to consider are those of the form G(F ) for a
reductive algebraic group G over a global field F and their arithmetic subgroups,
or of the form G(F ) for a local field F and their compact subgroups. When F =
R and G is semisimple, Friedmann and Stanley [5] obtain explicit formulas for
the conjugacy classes of fixed finite order in G(R). Below is a finitenss result of
Cl0(G(F )) for an non-archimedean local field F of characteristic zero.

Lemma 2.1. Let G be a connected reductive group over an non-archimedean local
field F of characteristic zero. Then Cl0G(F ) is finite.

Proof. Since charF = 0, every element in G(F ) of finite order is semisimple and
hence it is contained in a maximal F -torus T of G. Note that there are only finitely
many maximal F -tori up to conjugation by G(F ). Therefore, one reduces to the
case where G = T is a torus. Choose a finite extension K of F over which T splits.
One has T (F ) ⊂ (K×)d, where d = dimT . Since there are only finitely many roots
of unity in K×, the subgroup T (F )tors is finite. �

The following is a well-known result due to Borel and Harish-Chandra [1].

Theorem 2.2. Let G be a reductive group over a number field F , and Γ ⊂ G(F )
an S-arithmetic subgroup, where S is a finite set of places of F containing all
archimedean ones. Then there are only finitely many finite subgroups of Γ up to
conjugation by Γ. In particular, Cl0 Γ is finite.

Proposition 2.3. Let A be a finite-dimensional semisimple algebra over a number
field F . Then Cl0(A×) is finite.

Proof. For each positive integer n, denote by HomF (F [t]/(tn − 1), A) the set of
F -algebra homomorphisms from F [t]/(tn − 1) to A, and Hom∗F (F [t]/(tn − 1), A)
the subset consisting of maps ϕ with ord(ϕ(t)) = n. The group A× acts on
HomF (F [t]/(tn − 1), A) by conjugation, and we have orbit spaces

Hom∗F (F [t]/(tn − 1), A)/A× ⊂ HomF (F [t]/(tn − 1), A)/A×.

Let Cl0(n,A×) denote the set of conjugacy classes of elements of order n in A×.
Clearly this set agrees with the set Hom∗F (F [t]/(tn − 1), A)/A×.

Since A is separable, by the generalized Neother-Skolem theorem due to Pop and
Pop [12], the set HomF (F [t]/(tn−1), A)/A× is finite. Thus, Cl0(n,A×) is finite for
each n. Since Cl0(A×) is a union of Cl0(n,A×) and Cl0(n,A×) is empty for almost
all n, we prove the finiteness of Cl0(A×). �

Now we provide an example showing that Cl0G(F ) can be infinite for a connected
reductive group G over a number field F . Take G = SL2 and F = Q. Consider the
subset Cl0(4,SL2(Q)) ⊂ Cl0(SL2(Q)) of classes of order 4. We choose a base point

ξ0 =

(
0 −1
1 0

)
and set K := Q(ξ0), which is isomorphic to Q(

√
−1 ). Since every

element ξ ∈ SL2(Q) of order 4 is conjugate to ξ0 by an element g1 in GL2(Q), i.e.
ξ = g1ξ0g

−1
1 . Two elements g1 and g2 in GL2(Q) give rise to the same element ξ if

and only if g2 = g1z for some element z ∈ K×. Moreover, suppose ξ1 and ξ2 are two
elements in SL2(Q) of order 4 presented by g1 and g2, respectively. Then ξ1 and
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ξ2 are conjugate in SL2(Q) if and only if g2 = hg1z for some elements h ∈ SL2(Q)
and z ∈ K×. Therefore, we have proved a bijection

(2.1) Cl0(4,SL2(Q)) ' SL2(Q)\GL2(Q)/K×.

Taking the determinant, we have Cl0(4,SL2(Q)) ' Q×/NK/Q(K×). Note that

NK/Q(K×) consists of non-zero elements of the form a2 +b2 with a, b ∈ Q. By basic
number theory, we obtain the following result.

Proposition 2.4. The set Cl0(4,SL2(Q)) is in bijection with the F2-vector space
generated by −1 and prime elements p with p ≡ 3 (mod 4). In particular, Cl0(4,SL2(Q))
is an infinite set.

Remark 2.5. Another way to interpret the previous example is through the point
of view of stable conjugacy classes. Let G be a connected reductive group over
F as before. Two elements ξ1, ξ2 ∈ G(F ) are said to be stably conjugate if there
exists g ∈ G(F ) such that ξ1 = gξg−1. Let Gξ be the centralizer of ξ ∈ G(F ).
Langlands [9] establishes a bijection between the set of conjugacy classes within
the stable conjugacy class of ξ and ker(H1(F,Gξ) → H1(F,G)). In the example
where G = SL2 and F = Q, every element of order 4 in SL2(Q) is stably conjugate
to ξ0. Since H1(Q,SL2) = {1} and Gξ0 coincides with the norm 1 torus T :=

ker
(

ResK/Q(Gm,K)
NK/Q−−−→ Gm,Q

)
, we recover the result

Cl0(4,SL2(Q)) ' H1(Q, T ) = Q×/NK/Q(K×).

2.2. Galois cohomology and forms. Let X0 be a quasi-projective algebraic va-
riety over an arbitrary field k, and denote by Γk = Gal(ks/k) the Galois group
of ks/k, where ks is a separable closure of k. Let Σ(X0, ks/k) denote the set of
isomorphism classes of ks/k-forms of X0. In other words, Σ(X0, ks/k) classifies
algebraic varieties X over k such that there is an isomorphism X⊗k ks ' X0⊗k ks.
It is well known due to Weil that there is a natural bijection Σ(X0, ks/k)

∼−→
H1(Γk, G) of pointed sets, where G = Aut(X0 ⊗ ks) is the group of automor-
phisms of X0 ⊗k ks equipped with a continuous Γk-action. If Γk acts trivially on
Aut(X0 ⊗ ks), namely the natural inclusion Aut(X0) ↪→ Aut(X0 ⊗ ks) is bijective,
then one has H1(Γk, G) = Hom(Γk, G)/G, where G acts on Hom(Γk, G) by con-

jugation. In addition, if Γk is the profinite group Ẑ = lim←−Z/mZ, one obtains a
natural bijection of pointed sets:

(2.2) Σ(X0, ks/k)
∼−→ Cl0(G), G = Aut(X0).

Applying Weil’s result to abelian varieties over finite fields, one obtains the following
easy consequence.

Proposition 2.6. Let X0 be an abelian variety over a finite field Fq such that the

endomorphism algebra End0(X0⊗Fq) is equal to End0(X0), and let G = Aut(X0).

Then there is a natural bijection of pointed sets Σ(X0,Fq/Fq) ' Cl0(G).

Note that the group G in Proposition 2.6 is an arithmetic subgroup of the re-
ductive group G over Q for which G(R) = (End0(X0)⊗QR)× for any Q-algebra R.

Proof of Proposition 1.1. We choose an supersingular elliptic curve E0 over Fp2
with End(E0) = O under an isomorphism End0(E0) ' D. Put X0 = Ed0 ⊗Fp2

Fq,
then we have G = Aut(X0) = GLd(O) and the Galois group ΓFq

acts trivially on
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G. By Proposition 2.6, there is a natural bijection Σ(X0,Fq/Fq)
∼−→ Cl0G. As

X0 is superspecial of dimension d > 1, for any d-dimensional superspecial abelian
variety X over Fq there is an isomorphism X ⊗Fq Fq ' X0 ⊗Fq Fq; see [10, Section
1.6, p.13]. Thus, Σ(X0, ks/k) classifies d-dimensional superspecial abelian surfaces
over Fq up to Fq-isomorphism. This completes the proof of the proposition.

In this paper we compute explicitly the size of Cl0G in the case G = GL2(O)
(i.e. d = 2). This may serve as a basic sample of calculating |Cl0G| for arithmetic
subgroups G. One easily sees that the calculation becomes very complicated when
G is large. Explicit formulas for them seems to be out of reach. Still, the strategy
for computation and structures among various invariants would be worthwhile to
investigate. Perhaps, it is useful to mention the following work to the interested
reader, though these are not used in the present paper.

(a) Conjugacy classes of linear algebraic groups are studied by Springer and
Steinberg [14].

(b) Hashimoto [6] deduces a formula which relates optimal embeddings, semisim-
ple conjugacy classes and class numbers of Levi subgroups of an arithmetic sub-
group. This generalizes some previous methods for parameterizing conjugacy classes
of elements of finite order in Siegel modular groups.

3. The Cardinality of Cl0(GL2(O))

Let D be a finite-dimensional central division Q-algebra, and O a maximal or-
der in D. Fix an integer d > 1. We explain the strategy for calculating the
cardinality of Cl0(GLd(O)), based on the lattice description of conjugacy classes
in [21, Section 6.4]. As remarked in Section 1, |Cl0(GLd(O))| depends only on
d and D, not on the choice of the maximal order O. So it makes sense to set
H(d,D) := |Cl0(GLd(O))|. The strategy is carried out in detail for the case d = 2
and D = Dp,∞ in subsequent sections under a mild condition on p, and the resulting
formula for H(2, Dp,∞) is stated in Theorem 3.2.

3.1. The general strategy. Given an element x ∈ GLd(O) of finite order, its
minimal polynomial over Q is of the form

(3.1) Pn(T ) = Φn1(T ) · · ·Φnr (T ), 1 ≤ n1 < · · · < nr

for some r-tuple n = (n1, . . . , nr) ∈ Nr, where Φn(T ) ∈ Z[T ] denotes the n-th
cyclotomic polynomial. For simplicity, we denote the set of strictly increasing
r-tuples of positive integers by N̆r. Let C(n) ⊆ Cl0(GLd(O)) be the subset of
conjugacy classes with minimal polynomial Pn(T ). The subring Z[x] ⊂ Matd(O)
(resp. subalgebra Q[x] ⊂ Matd(D)) generated by x is isomorphic to An (resp. Kn)
defined as follows

(3.2) An :=
Z[T ]∏r

i=1 Φni(T )
, Kn :=

Q[T ]∏r
i=1 Φni(T )

∼=
r∏
i=1

Q[T ]/(Φni
(T )).

If r = 1, we omit the underline in n and write An and Kn instead. Hence Kn
∼=∏r

i=1Kni
, but this decomposition does not hold for An in general. Let Oopp (resp.

Dopp) be the opposite ring of O (resp. D). We define

(3.3) An := An ⊗Z Oopp, and Kn := Kn ⊗Q D
opp.
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Clearly, An is an order in the semisimple Q-algebra Kn
∼=
∏r
i=1 Kni

. Each Kn

is a central simple Kn-algebra, whose left simple module is denoted by Wn. The
dimension e(n) of Wn as a left Dopp-space (or equivalently, a right D-space) is also
the smallest e ∈ N such that there exists an embedding Kn ↪→ Mate(D).

Let V = Dd be the right D-space of column vectors, and M0 = Od ⊂ V the stan-
dard O-lattice in V . Then EndO(M0) = Matd(O), acting on M0 from the left by
multiplication. The conjugacy class [x] ∈ C(n) equips M0 with a faithful (An,O)-
bimodule structure, or equivalently, a faithful left An-module structure. Similarly,
V is equipped with a faithful left Kn-module structure. The decomposition of Kn

in (3.2) induces a decomposition

(3.4) V = ⊕ri=1Vni ,

where each Vni
is a nonzero Kni

-module. Hence Vni
' (Wni

)mi for some mi ∈ N.
Comparing the D-dimensions, we get

(3.5) d = m1e(n1) + · · ·+mre(nr).

The r-tuple m = (m1, . . . ,mr) ∈ Nr shall be called the type of the left Kn-module
V , and the pair (n,m) the type of the conjugacy class [x] ∈ C(n) ⊆ Cl0(GLd(O)).

A pair of r-tuples (n,m) ∈ N̆r × Nr is said to be d-admissible if it satisfies
equation (3.5). Let C(n,m) ⊆ Cl0(GLd(O)) be the subset of conjugacy classes of
type (n,m). Then we have

(3.6) Cl0(GLd(O)) =
∐
n

C(n) =
∐

(n,m)

C(n,m),

where (n,m) runs over all d-admissible pairs. The same proof of [21, Theorem 6.11]
establishes a bijection between C(n,m) and the set L (n,m) of isomorphism classes
of An-lattices in the left Kn-module V of type m. The latter set is finite according
to the Jordan-Zassenhaus Theorem [2, Theorem 24.1, p. 534]. Put o(n) := |C(n)|
and o(n,m) := |C(n,m)| = |L (n,m)|. It follows from (3.6) that

(3.7) H(d,D) = |Cl0(GLd(O))| =
∑
n

o(n) =
∑

(n,m)

o(n,m).

Now fix a d-admissible pair (n,m) ∈ N̆r×Nr and a left Kn-module V of type m.
The isomorphism class of an An-lattice Λ ⊂ V is denoted by [Λ]. Two An-lattices
Λ1,Λ2 ⊂ V are isomorphic if and only if there exists g ∈ EndKn

(V )× such that
Λ1 = Λ2g (In particular, EndKn

(V ) acts on V from the right). Clearly,

(3.8) EndKn
(V ) = ⊕ri=1 EndKni

(Vni
), and EndKni

(Vni
) ∼ Kni

= Kni
⊗Q D

opp,

where ∼ denotes the Morita equivalence of central simple algebras. On the other
hand, EndKni

(Vni
)opp is canonically isomorphic to the centralizer ofKni

in EndD(Vni
).

So by the Centralizer Theorem [4, Theorem 3.15],

[Kni
: Q]2[EndKni

(Vni
) : Kni

] = [EndD(Vni
) : Q] = [D : Q](mie(ni))

2.(3.9)

The structure of EndKn
(V ) is completely determined by (3.8) and (3.9).

For each prime ` ∈ N, let Λ` be the `-adic completion of Λ, and L`(n,m)
the set of isomorphism classes of An,`-lattices in V`. The profinite completion

Λ 7→ Λ̂ =
∏
` Λ` induces a surjective map

(3.10) Φ : L (n,m)→
∏
`

L`(n,m).
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For almost all primes `, the order An,` is maximal in Kn,`, in which case L`(n,m)
is a singleton by [2, Theorem 26.24]. So the right hand side of (3.10) is essentially
a finite product. Two lattices Λ1 and Λ2 are said to be in the same genus if
Φ([Λ1]) = Φ([Λ2]), that is, if they are locally isomorphic at every prime `. The
fibers of Φ partition L (n,m) into a disjoint union of genera. More explicitly, for
each element L = ([Λ′`])` ∈

∏
` L`(n,m), let

(3.11) L (n,m,L) := Φ−1(L) = {[Λ] ∈ L (n,m) | Λ` ' Λ′`,∀`.}.
Then L (n,m) =

∐
L L (n,m,L), where L runs over elements of

∏
` L`(n,m).

Lastly, we pick an An-lattice Λ ⊂ V with [Λ] ∈ L (n,m,L) and write OΛ for its
endomorphism ring EndAn

(Λ) ⊂ EndKn
(V ). It follows from [15, Proposition 1.4]

that L (n,m,L) is bijective to the set of right ideal classes of OΛ. In particular,

(3.12) |L (n,m,L)| = h(OΛ).

Another choice Λ′ with [Λ′] ∈ L (n,m,L) produces an endomorphism ring OΛ′

locally conjugate to OΛ at every prime `, and hence the same class number h(OΛ′) =
h(OΛ). If An is maximal at `, then (OΛ)` is a maximal order in EndKn

(V )` =
EndKn,`

(V`)
In summary, the calculation of H(d,D) is separated into 3 steps:

(1) for each 1 ≤ r ≤ d, list the set T (d, r) of all d-admissible pairs (n,m) ∈
N̆r × Nr. We set T (r) = T (d, r) if d is clear from the context.

(2) For each (n,m), classify the genera of An-lattices in the left Kn-module V
of type m. This amounts to classifying the isomorphism classes of An,`-
lattices in V`. Only the primes ` with An,` non-maximal come in to play.

(3) For each genus, write down (at least locally) the endomorphism ring of an
lattice member and calculate its class number. The sum of all these class
numbers is H(d,D).

Remark 3.1. We make a couple simplifications for the calculations.
(i) The center Z(GLd(O)) = {±1} acts on Cl0(GLd(O)) by multiplication and
induces a bijection between C(n) and C(n†), where n† is obtained by first defining

an intermediate r-tuple n‡ := (n‡1, . . . , n
‡
r) with

(3.13) n‡i =


2ni if 2 - ni,
ni if 4 | ni,
ni/2 otherwise,

for each 1 ≤ i ≤ r, and then re-arrange its entries in ascending order. For example,
if n = (3, 4), then n† = (4, 6). Thus o(n) = o(n†) and only one of them needs to be
calculated.
(ii) Let u be the reduced degree of D over Q, and Λ an An-lattice in the Kn-
module V of type m. For almost all primes `, we have Oopp ⊗Z` ' Matu(Z`), and
hence An,` ' Matu(An,`). Fix such an `. It then follows from Morita equivalence
that Λ` ' (Λ′`)

u and V` ' (V ′` )u, where Λ′` is an An,`-lattice in the Kn,`-module
V ′` =

∏r
i=1 V

′
ni,`

. Each V ′ni,`
is a free Kni,`-module of rank

(3.14) dimQ(Dmie(ni))/(u[Kni : Q]) = umie(ni)/ϕ(ni).

The association Λ` 7→ Λ′` establishes a one-to-one correspondence between L`(n,m)
and the set of isomorphism classes of An,`-lattice in V ′` . Moreover, EndAn,`

(Λ`) ∼=
EndAn,`

(Λ′`).
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3.2. Explicit formulas for H(2, Dp,∞). First, we list all 2-admissible pairs (n,m) ∈
N̆r × Nr for r = 1, 2. Note that e(n) ≤ 2 only if ϕ(n) = [Kn : Q] ≤ 4, i.e.
n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. More explicitly,

• if n ∈ {1, 2}, then Kn = Q and e(n) = 1;
• if n ∈ {3, 4, 6}, then [Kn : Q] = 2. We have e(n) = 2 if p splits in Kn, and
e(n) = 1 otherwise.

• if n ∈ {5, 8, 10, 12}, then [Kn : Q] = 4 and e(n) ≥ 2. The equality holds if
and only if p does not split completely in Kn.

Thus we have

T (1) = {(n,m) ∈ N× N | n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12},me(n) = 2},

T (2) = {((n1, n2), (m1,m2)) ∈ N̆2 × N2 | n1 < n2, ni ∈ {1, 2, 3, 4, 6},mie(ni) = 1}.

For each n ∈ N̆r with r = 1, 2, there is at most one m ∈ Nr such that (n,m) is
2-admissible. So we omit m from the notation L (n,m) and write L (n) instead.
By Remark 3.1, we have

o(1) = o(2) = 1, o(3) = o(6), o(5) = o(10);

o(1, 3) = o(2, 6), o(1, 4) = o(2, 4), o(1, 6) = o(2, 3), o(3, 4) = o(4, 6).

Theorem 3.2. Let D = Dp,∞ be the quaternion Q-algebra ramified exactly at p
and ∞, and O a maximal order in D. We have

H(2, Dp,∞) =|Cl0(GL2(O))| = 2 + 2o(3) + o(4) + 2o(5) + o(8) + o(12)

+ o(1, 2) + 2o(2, 3) + 2o(2, 4) + 2o(2, 6) + 2o(3, 4) + o(3, 6),
(3.15)

where the value of each term is as follows:

• o(3) = 2−
(
−3
p

)
;

• o(4) = 2−
(
−4
p

)
;

• o(5) =


1 if p = 5;

0 if p ≡ 1 (mod 5);

2 if p ≡ 2, 3 (mod 5);

4 if p ≡ 4 (mod 5);

• o(8) =


1 if p = 2;

0 if p ≡ 1 (mod 8);

4 if p ≡ 3, 5, 7 (mod 8);

• o(12) =


3 if p = 2, 3;

0 if p ≡ 1 (mod 12);

4 if p ≡ 5, 7, 11 (mod 12);

• o(1, 2) =
(p− 1)2

9
+
p+ 15

18

(
1−

(
−3

p

))
+
p+ 2

6

(
1−

(
−4

p

))
+

1

6

(
1−

(
−3

p

))(
1−

(
−4

p

))
if p 6= 3, and

o(1, 2) =3 if p = 3;
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• o(2, 3) =
(

1−
(
−3
p

))(
p−1
12 + 1

3

(
1−

(
−3
p

))
+ 1

4

(
1−

(
−4
p

)))
;

• o(2, 4) =
(
p+3

3 −
1
3

(
−3
p

))(
1−

(
−4
p

))
;

• o(2, 6) =
(

5p+18
12 + 1

3

(
−3
p

)
− 1

4

(
−4
p

))(
1−

(
−3
p

))
;

• o(3, 4) =
(

1−
(
−3
p

))(
1−

(
−4
p

))
;

• o(3, 6) = 2
(

1−
(
−3
p

))2

.

Corollary 3.3. Keeping the notations of Theorem 3.2, we have

(3.16) lim
p→∞

H(2, Dp,∞)

p2/9
= 1.

Proof. By Theorem 3.2, the dominant term of H(2, Dp,∞) is o(1, 2), which is as-
ymptotic to (p− 1)2/9 as p tends to infinity. �

For ease of exposition of the present paper, we will work out the calculation
of each o(n) in Theorem 3.2 under the assumption that An ⊗Z Zp is an étale Zp-
algebra. For example, if r = 1, this simply requires p to be unramified in Kn.
Note that this assumption holds automatically when p ≥ 7 so it rules out at most
p = 2, 3, 5. Section 4 treats the elementary case where r = 1. The remaining case
r = 2 is called non-elementary and is treated in Section 5. The calculation of class
numbers of certain complicated orders arose in Section 5 is postponed to Section 6.
The handful cases where the assumption fails will be treated in an upcoming paper
[22], where the ramification requires much greater care.

Remark 3.4. Karemaker and Pries [8, Proposition 7.2] give a full classification of
the types of principally polarized simple supersingular abelian surfaces (A, λ) over
a finite field Fq with AutFq

(A, λ) = Z/2Z. They also prove [8, Proposition 7.6] that

if p ≥ 3, then the portion of Fpr -rational points of the supersingular locus A2,ss

which represent (A, λ) with AutFq
(A, λ) 6= Z/2Z tends to zero as r →∞. They ask

weather or not the majority of principally polarized supersingular abelian surfaces
over Fpr are those with normalized Weil number (1, 1,−1,−1). From Theorem 3.2
and [21, Theorems 1.1 and 1.2] we see that the portion of superspecial abelian
surfaces over Fpr with normalized Weil number (1, 1,−1,−1) (with r fixed) tends
to one as p → ∞. However, to deduce the similar result for supersingular abelian
surfaces, one could use the argument of [18, Section 5] where we compute the size
of the isogeny class corresponding to the Weil number

√
pr with odd r.

4. Computations of the elementary case

Throughout this section, n denotes one of the integers {3, 4, 5, 8, 12}, and D =
Dp,∞, the quaternion Q-algebra ramified exactly at the prime p and ∞. The goal
of this section is to calculate the terms o(n) in Theorem 3.2, under the assumption
that p is unramified in Kn (i.e. p - n). Note that p splits completely in Kn if
and only if p ≡ 1 (mod n). By the discussion at the beginning of Section 3.2, if
n ∈ {5, 8, 12} then we further assume that p 6≡ 1 (mod n), for otherwise o(n) = 0.

The cyclotomic field Kn with n ∈ {3, 4, 5, 8, 12} has class number 1 by [17,
Theorem 11.1]. For n ∈ {3, 4} and p ≡ 1 (mod n), let Dn denote the quater-
nion Kn-algebra ramified exactly at the two places of Kn above p. Since Dopp is
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canonically isomorphic to D, we have

(4.1) Kn = Kn ⊗Q D =

{
Dn if n ∈ {3, 4} and p ≡ 1 (mod n),

Mat2(Kn) otherwise.

The order An ⊂ Kn is maximal at every prime ` 6= p. It is also maximal at p when
n ∈ {3, 4} and p ≡ 1 (mod n). Let V ' D2 be the unique faithful left Kn-module
of D-dimension 2 (as a right D-vector space). Then V is a free Kn-module of rank
1 if n ∈ {3, 4}, and a simple Kn-module if n ∈ {5, 8, 12}. By (3.8) and (3.9), we
have

(4.2) En := EndKn
(V ) '

{
Kn ⊗Q D if n ∈ {3, 4},
Kn if n ∈ {5, 8, 12}.

If n ∈ {3, 4}, then En is a quaternion algebra over the imaginary quadratic field Kn.
Hence En verifies the Eichler condition [13, Definition 34.3], and Nr(E×n ) = K×n by
[16, Theorem III.4.1].

Let Λ be an An-lattice in V , and OΛ := EndAn
(Λ). The order OΛ ⊂ En is

maximal at every prime ` 6= p by the maximality of An,`. If n ∈ {5, 8, 12}, then
An ⊆ OΛ ⊂ Kn, and hence OΛ = An, which has class number 1. If n ∈ {3, 4},
then OΛ is an An-order in En. We claim that h(OΛ) = 1 in this case as well. If p is
inert in Kn, then it will be shown that OΛ is an Eichler order in Proposition 4.1,
otherwise OΛ is maximal in En. Thus h(OΛ) = h(An) = 1 by [16, Corollaire III.5.7].
It follows that for all n ∈ {3, 4, 5, 8, 12} and p - n,

(4.3) o(n) = |
∏
`

L`(n)| = |Lp(n)|.

For each f ∈ N, let Zpf = W (Fpf ), the ring of Witt vectors of Fpf . Then
Qpf := Zpf [1/p] is the unique unramified extension of degree f of Qp.

Proposition 4.1. Suppose that n ∈ {3, 4} and p - n. Then

o(3) = 2−
(
−3

p

)
and o(4) = 2−

(
−4

p

)
.

Proof. If p splits in Kn, then An is a maximal order in Kn, so there is a unique
genus of An-lattices in V . We have o(n) = 1 by (4.3).

Suppose that p is inert in Kn. Then e(n) = 1, and V is a free Kn-module of
rank 1. We have An,p = An ⊗ Zp = Zp2 , so by [16, Corollaire II.1.7],

An,p = An,p ⊗Zp Op '
(
Zp2 Zp2
pZp2 Zp2

)
.

It follows that any An,p-lattice Λp ⊆ Vp is isomorphic to one of the following(
Zp2 Zp2
pZp2 pZp2

)
,

(
Zp2 Zp2
pZp2 Zp2

)
,

(
Zp2 Zp2
Zp2 Zp2

)
.

Correspondingly, (OΛ)p is isomorphic to

Mat2(Zp2),

(
Zp2 Zp2
pZp2 Zp2

)
, Mat2(Zp2),

which verifies the claim above (4.3) that OΛ is an Eichler order when p is inert in
Kn. We conclude that o(n) = 3 by (4.3). �
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Proposition 4.2. Suppose that n ∈ {5, 8, 12} and p - n. Then the formulas for
o(n) in Theorem 3.2 hold. More explicitly,

(1) o(n) = 0 if p ≡ 1 (mod n);
(2) o(5) = 2 if p ≡ 2, 3 (mod 5);
(3) o(n) = 4 in the remaining cases.

Proof. Only part (2) and (3) need to be proved. Suppose that p 6≡ 0, 1 (mod n).
Then e(n) = 2, and V is a simple Kn-module.

If n = 5 and p ≡ 2, 3 (mod 5), then

A5,p ' Zp4 , and A5,p = A5,p ⊗Zp Op '
(
Zp4 Zp4
pZp4 Zp4

)
.

Any A5,p-lattice Λp ⊆ Vp is isomorphic to

(
Zp4
pZp4

)
or

(
Zp4
Zp4

)
. Hence o(5) = 2 in

this case.
For the remaining cases, we have

An,p = An,p ⊗Zp
Op ' (Zp2 × Zp2)⊗Zp

Op '
(
Zp2 Zp2
pZp2 Zp2

)
×
(
Zp2 Zp2
pZp2 Zp2

)
.

Every An,p-lattice Λp ⊆ Vp decomposes into Λ
(1)
p ⊕ Λ

(2)
p , where each Λ

(i)
p is a(

Zp2 Zp2
pZp2 Zp2

)
-lattice in the simple Mat2(Qp2)-module V

(i)
p ' (Qp2)2. There are 2

isomorphism classes of Λ
(i)
p for each i = 1, 2. Therefore, o(n) = 22 = 4. �

5. Computations of non-elementary cases

We treat the non-elementary cases

(5.1) n = (n1, n2) ∈ {(1, 2), (2, 3), (2, 4), (2, 6), (3, 4), (3, 6)},

under the assumption that An,p = An ⊗ Zp is étale over Zp. Equivalently, p is
assumed to satisfy the following two conditions:

(I) p is unramified in Kni = Q[T ]/(Φni(T )) for i = 1, 2;
(II) An,p = Zp[T ]/(Φn1(T )Φn2(T )) is maximal in Kn,p.

This rules out at most p = 2, 3. There exists a faithful left Kn-module V ' D2 if
and only if e(ni) = 1 for both i = 1, 2. Thus o(n) = 0 unless p is inert in Kni when
[Kni : Q] = 2. So we make further restrictions on p as listed in Table 1.

By (3.4), V = Vn1
⊕Vn2

, where each Vni
is a simple Kni

-module with dimD Vni
=

1. Therefore, En := EndKn
(V ) = EndKn1

(Vn1
)× EndKn2

(Vn2
), and

(5.2) ∀i = 1, 2, EndKni
(Vni) =

{
D if Kni

= Q;

Kni
if [Kni

: Q] = 2.

Let OKn = Z[T ]/(Φn1(T ))×Z[T ]/(Φn2(T )) be the maximal order of Kn. There
is an exact sequence of An-modules

(5.3) 0→ An → OKn

ψ−→ Z[T ]/(Φn1
(T ),Φn2

(T ))→ 0,

where ψ : (x, y) 7→ x̄− ȳ. The indices [OKn
: An] are listed in Table 1.
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Table 1.

n Kn = Kn1 ×Kn2 [OKn : An] En Conditions on p

(1, 2) Q×Q 2 D ×D p 6= 2

(2, 3) Q×Q(
√
−3 ) 1 D ×Q(

√
−3 ) p ≡ 2 (3)

(2, 4) Q×Q(
√
−1 ) 2 D ×Q(

√
−1 ) p ≡ 3 (4)

(2, 6) Q×Q(
√
−3 ) 3 D ×Q(

√
−3 ) p ≡ 2 (3)

(3, 4) Q(
√
−3 )×Q(

√
−1 ) 1 Q(

√
−3 )×Q(

√
−1 ) p ≡ 11 (12)

(3, 6) Q(
√
−3 )×Q(

√
−3 ) 4 Q(

√
−3 )×Q(

√
−3 ) p ≡ 2 (3), p 6= 2

For s = 2, 3, let ps be the unique prime ideal of A2s above s, which has residue
field A2s/ps ∼= Fs. Similarly, let q2 = 2A3 be the prime ideal of A3 above 2. We
write down the non-maximal orders An explicitly using (5.3):

A(1,2) = {(a, b) ∈ Z× Z | a ≡ b (mod 2)};(5.4)

A(2,2s) = {(a, b) ∈ Z×A2s | (a mod s) ≡ (b mod ps)} for s = 2, 3;(5.5)

A(3,6) ' {(a, b) ∈ A3 ×A3 | a ≡ b (mod q2)},(5.6)

where A6 = Z[T ]/(T 2 − T + 1) is identified with A3 = Z[T ]/(T 2 + T + 1) via a
change of variable T 7→ −T . Applying [21, Lemma 7.2] if necessary, we have

(5.7) h(A(3,4)) = h(A(3,6)) = 1.

Recall that the class number of O is given by

(5.8) h(O) =
p− 1

12
+

1

3

(
1−

(
−3

p

))
+

1

4

(
1−

(
−4

p

))
.

By our assumptions, the order An is non-maximal at a prime ` if and only if one
of the following mutually exclusive conditions holds: (i) ` = p and n 6= (1, 2); (ii)
` | [OKn

: An].

Proposition 5.1. Let n = (n1, n2) be a pair in (5.1), and p ∈ N a prime satisfying
the corresponding condition in Table 1. Then

|Lp(n)| = [Kn1 : Q][Kn2 : Q].

For any An-lattice Λ ⊂ V , the endomorphism ring OΛ = EndAn
(Λ) is maximal at

p.

Proof. By assumption (II), An,p = An1,p × An2,p. Consequently, Λp decomposes
as Λn1,p ⊕ Λn2,p, where each Λni,p is an Ani,p-lattice in the simple Kni,p-module
Vni,p. It is enough to show that the number of isomorphic classes of Ani,p-lattices
in Vni,p is [Kni

: Q], and EndAni,p
(Λni,p) is maximal for each i = 1, 2.

If Kni
= Q, then Ani,p = Op. We have Λni,p ' Op, and EndAni,p

(Λni,p) = Op.
If [Kni

: Q] = 2, then Ani,p ' Zp2 since p is inert in Kni
by our assumption. It

follows that Ani,p = Zp2 ⊗Zp Op '
(
Zp2 Zp2
pZp2 Zp2

)
, and Λni,p is isomorphic to either(

Zp2
pZp2

)
or

(
Zp2
Zp2

)
. In both cases, EndAni,p

(Λni,p) = Zp2 . �
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Corollary 5.2. (1) o(2, 3) =
(

1−
(
−3
p

))
h(O) for all p 6= 3.

(2) o(3, 4) =
(

1−
(
−3
p

))(
1−

(
−4
p

))
for all p 6= 2, 3.

Proof. Suppose that n ∈ {(2, 3), (3, 4)}, and p satisfies the corresponding condi-
tion in Table 1. We have An = OKn

, so An is maximal at every prime ` 6= p.
By Proposition 5.1, the endomorphism rings of An-lattices in V are maximal or-
ders in EndKn(V ), which share the same class number. It follows that o(n) =
|Lp(n)|h(OΛ) for any An-lattice Λ ⊂ V . If n = (2, 3), then EndKn

(V ) = D ×K3,
and h(OΛ) = h(O)h(A3) = h(O). If n = (3, 4), then EndKn(V ) = K3 ×K4, and
OΛ = A3 ×A4, which has class number 1.

For the remaining primes p considered in the corollary, both sides of the formulas
are zero. The corollary is proved. �

For the rest of this section we assume that

(5.9) n ∈ {(1, 2), (2, 4), (2, 6), (3, 6)}
and ` ∈ N a prime divisor of [OKn : An]. Note that ` is uniquely determined
by n for each n. Since ` 6= p by our assumption, we have O` ' Mat2(Z`). By
Remark 3.1, the classification of isomorphism classes of An,`-lattices in V` reduces
to that of An,`-lattices in the Kn,`-module V ′` , where V` = (V ′` )2 and

(5.10) V ′` '


(Kn,`)

2 = (Q2 ×Q2)2 if n = (1, 2) and ` = 2;

(K2,`)
2 ×K2s,` = Q2

s ×K2s,s if n = (2, 2s) and ` = s ∈ {2, 3};
Kn,` = Q4 ×Q4 if n = (3, 6) and ` = 2.

First, we treat the cases n ∈ {(1, 2), (3, 6)}, for which V ′` is a free Kn,`-module,
and ` = 2 for both n. Let tn be the Kn,2-rank of V ′2 , i.e. tn = 2 if n = (1, 2),

and tn = 1 if n = (3, 6). By [21, Lemma 7.1], An is a Bass order for both1 n, and
so is An,2 = An ⊗ Z2 since the Bass property is local (See [2, Section 37] for the
concept of Bass orders). It follows from the results of Borevich and Faddeev [2,
Section 37, p.789] that any An,2-lattice Λ′2 ⊂ V ′2 is isomorphic to R1 ⊕ · · · ⊕ Rtn
for orders R1 ⊆ · · · ⊆ Rtn containing An,2 in Kn,2. The multiset {R1, . . . , Rtn} of
orders with multiplicities is completely determined by the isomorphism class of Λ′2,
and vice versa.

Proposition 5.3. o(3, 6) = 2
(

1−
(
−3
p

))2

for all p 6= 2, 3.

Proof. Only the case p ≡ 2 (mod 3) and p 6= 2 requires a proof. For n = (3, 6),
OKn,2

is the only order in Kn,2 properly containing An,2 by (5.6). So any An,2-
lattice Λ′2 in V ′2 ' Kn,2 is isomorphic to An,2 or OKn,2

. Correspondingly,

(5.11) EndAn,2
(Λ′2) =

{
An,2 if Λ′2 ' An,2,
OKn,2

if Λ′2 ' OKn,2
,

and the same holds for EndAn,2
(Λ2) by Remark 3.1. It follows from Proposition 5.1

that

EndAn
(Λ) =

{
An if Λ2 ' (An,2)2,

OKn if Λ2 ' (OKn,2)2

1In fact, An is Bass for all n = (n1, n2) ∈ N̆2. But the same cannot be said for n ∈ N̆r with

r ≥ 3 since A(1,2,4) = Z[T ]/(T 4 − 1) already provides a counterexample.
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for any An-lattice Λ ⊂ V . Recall that h(An) = h(OKn
) = 1 by (5.7). Therefore,

when n = (3, 6), p ≡ 2 (mod 3) and p 6= 2, we have

o(n) = |L2(n)| · |Lp(n)| = 2 · 4 = 2

(
1−

(
−3

p

))2

. �

Now suppose that n = (1, 2). Then Kn = Q×Q, and An is the unique suborder
of index 2 in OKn

= Z× Z. To write down the formula for o(1, 2), we define a few
auxiliary orders. Let O1(1, 2) := O ×O, a maximal order in EndKn(V ) = D ×D.
Fix an isomorphism O2 ' Mat2(Z2), and thereupon an isomorphism

O1(1, 2)2 = (O ×O)⊗ Z2 ' Mat2(Z2 × Z2) = Mat2(OKn,2).

Let O8(1, 2) and O16(1, 2) be the suborders of O1(1, 2) index 8 and 16 respectively
such that

O8(1, 2)2 =

(
An,2 2OKn,2

OKn,2
OKn,2

)
, O16(1, 2)2 = Mat2(An,2);

Oi(1, 2)`′ = O1(1, 2)`′ ∀ prime `′ 6= 2 and i = 8, 16.

(5.12)

Proposition 5.4. If p = 3, then o(1, 2) = 3. For p 6= 2, 3, we have

o(1, 2) =h(O1(1, 2)) + h(O8(1, 2)) + h(O16(1, 2))

=
(p− 1)2

9
+
p+ 15

18

(
1−

(
−3

p

))
+
p+ 2

6

(
1−

(
−4

p

))
+

1

6

(
1−

(
−3

p

))(
1−

(
−4

p

))
.

(5.13)

Proof. Throughout this proof, we assume that p 6= 2. By (5.10), V ′2 is a free Kn,2-

module of rank 2. Any An,2-lattice Λ′2 ⊆ V ′2 is isomorphic to Ajn,2⊕(OKn,2
)2−j with

j = 0, 1, 2. Correspondingly, the endomorphism ring EndAn,2
(Λ′2) is isomorphic to

O1(1, 2)2, O8(1, 2)2, O16(1, 2)2.

Since |Lp(n)| = 1 by Proposition 5.1, there are three genera of An-lattices in V .
Each is represented by a lattice with endomorphism ring Oi(1, 2) for i ∈ {1, 8, 16},
respectively. It follows that

(5.14) o(1, 2) = h(O1(1, 2)) + h(O8(1, 2)) + h(O16(1, 2)).

The class numbers h(O8(1, 2)) is given by (6.6). If p = 3, then h(O16(1, 2)) = 1 by
Remark 6.6, otherwise h(O16(1, 2)) is give by (6.12). Lastly, we have h(O1(1, 2)) =
h(O)2. The explicit formula for o(1, 2) follows from (5.14). �

Finally, we study the terms o(2, 2s) for s ∈ {2, 3}. We have [OKn : An] = s,
and EndKn

(V ) = D × K2s by (5.2). Let O1(2, 2s) be the maximal order O ×
A2s ⊂ EndKn(V ). Recall that p 6= s by our assumption, so we fix an isomorphism
Os ' Mat2(Zs). By an abuse of notation, we still write ps for the unique prime
ideal of A2s,s above s. Let Os2(2, 2s) be the suborder of index s2 in O1(2, 2s) such
that
(5.15)

Os2(2, 2s)s =

{([
a11 a12

a21 a22

]
, b

)
∈ O1(2, 2s)s

∣∣∣∣ a21 ≡ 0 (mod s)
(a22 mod s) ≡ (b mod ps)

}
;

Os2(2, 2s)`′ = O1(2, 2s)`′ ∀ prime `′ 6= s.
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Proposition 5.5. Suppose that s ∈ {2, 3} and p satisfies the corresponding con-
dition for n = (2, 2s) in Table 1. Then o(2, 2s) = 2h(O1(s, 2s)) + 2h(Os2(2, 2s)).
More explicitly,

o(2, 4) =

(
p+ 3

3
− 1

3

(
−3

p

))(
1−

(
−4

p

))
if p 6= 2;

o(2, 6) =

(
5p+ 18

12
+

1

3

(
−3

p

)
− 1

4

(
−4

p

))(
1−

(
−3

p

))
if p 6= 3.

Proof. For the explicit formulas for o(2, 4) and o(2, 6), only the cases that p satisfies
the corresponding condition in Table 1 is nontrivial and need a proof.

Let V ′s = Q2
s × K2s,s = Qs ⊕ Kn,s be the module over Kn,s = Qs × K2s,s in

(5.10). We claim that any An,s-lattice Λ′s ⊂ V ′s is isomorphic to Σ0 := Zs ⊕OKn,s

or Σ := Zs ⊕An,s.
Without lose of generality, we may assume that

(5.16) OKn,s · Λ′s = Z2
s ⊕A2s,s = Zs ⊕OKn,s = Σ0.

By (5.5), the Jacobson radical Js = sZs×ps of OKn,s
is contained in An,s, and thus

coincides with the Jacobson radical of An,s. The quotient An,s/Js ' Fs embeds
diagonally into OKn,s/Js ' Fs × Fs. We have

(i) JsΣ0 ⊂ Λ′s;
(ii) the Fs-vector space Λ̄′s := Λ′s/JsΣ0 generates the Fs × Fs-module Σ̄0 :=

Σ0/JsΣ0 ' F2
s × Fs.

In particular, dimFs
Λ̄′s ≥ 2 since Λ̄′s projects surjectively onto both factors F2

s and
Fs of Σ̄0. By Nakayama’s lemma, the association Λ′s 7→ Λ̄′s establishes a one-to-one
correspondence between the set of An,s-sublattices of Σ0 satisfying (5.16) and the
set of Fs-subspaces of Σ̄0 satisfying property (ii) above. Two An,s-sublattices Λ′s
and Λ′′s of Σ0 satisfying (5.16) are isomorphic if and only if there exists

g ∈ EndOKn,s
(Σ0)× = GL2(Zs)×A×2s,s

such that Λ′sg = Λ′′s . In light of the correspondence above, Λ′s ' Λ′′s if and only if
there exists ḡ ∈ EndFs×Fs

(Σ̄0)× = GL2(Fs) × F×s such that Λ̄′sḡ = Λ̄′′s . There are
two cases to consider:

• if dimFs
Λ̄′s = 3, then Λ̄′s = Σ̄0, and hence Λ′s = Σ0;

• if dimFs
Λ̄′s = 2, then there exists ḡ ∈ GL2(Fs)× F×s such that Λ̄′sḡ = Σ̄ =

Fs ⊕ (An,s/Js). Therefore, Λ′s ' Σ in this case.

The claim is verified. Direct calculation shows that

EndAn,s
(Λ′s) =

{
O1(2, 2s)s if Λ′s ' Σ0;

Os2(2, 2s)s if Λ′s ' Σ.

The classification at s partitions the set of isomorphism classes of An-lattices Λ ⊂ V
into two subsets, according to the local isomorphism classes of Λs. Each subset
consists of two genera by Proposition 5.1. Taking into account of the maximality
of EndAn,p(Λp) for every Λ, we have

(5.17) o(2, 2s) = 2h(O1(2, 2s)) + 2h(Os2(2, 2s)).

The class number of O4(2, 4) and O9(2, 6) are calculated in Proposition 6.4, and
h(O1(2, 2s)) = h(O)h(A2s) = h(O) for s ∈ {2, 3}. The explicit formulas for o(2, 4)
and o(2, 6) follow directly. �
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Remark 5.6. When n = (2, 6), An ' A(1,3) = Z[T ]/(T 3 − 1) coincides with the
group ring Z[C3] for the cyclic group C3 of order 3. The classification of An,3-
lattices is equivalent to that of Z3-representations of C3. Similarly, A(2,4) is a
quotient of Z[C4]. Therefore, one may also apply the result of Heller and Reiner [7]
on indecomposable integral representations over cyclic groups of order ℘2 (℘ ∈ N a
prime) to obtain the claim in Proposition 5.5.

6. Class numbers of certain orders

In this section, we compute the class numbers of the orders O8(1, 2),O16(1, 2),O4(2, 4)
and O9(2, 6), defined in (5.12) and (5.15). Throughout this section, the prime p is
assumed to satisfy the corresponding condition in Table 1 for n = (1, 2), (2, 4), (2, 6)
respectively.

First, we recall some properties about ideal classes in more general settings. Let
R ⊂ S be two Z-orders in a finite dimensional semisimple Q-algebra B. There is a
natural surjective map between the sets of locally principal right ideal classes

π : Cl(R)→ Cl(S), [I] 7→ [IS].

The surjectivity is best seen using the idelic language, where π is given by

(6.1) π : B×\B̂×/R̂× → B×\B̂×/Ŝ×, B×xR̂× 7→ B×xŜ×, ∀x ∈ B̂×.

Let J ⊂ B be a locally principal right S-ideal. We study the fiber π−1([J ]).

Write Ĵ = xŜ for some x ∈ B̂×, and set SJ := Ol(J) = B ∩ xŜx−1, the associated
left order of J . By (6.1), we have

(6.2) π−1([J ]) = π−1(B×xŜ×) = B×\(B×xŜ×)/R̂×.

Multiplying B×xŜ× from the left by x−1 induces a bijection between B×\(B×xŜ×)/R̂×
and the set

(x−1B×x)\(x−1B×xŜ×)/R̂×

which is in turn isomorphic to (x−1B×x ∩ Ŝ×)\Ŝ×/R̂×. Therefore, we obtain a
double coset description of the fiber

(6.3) π−1([J ]) ' (x−1S×J x)\Ŝ×/R̂×.

Lemma 6.1. Suppose that Ŝ× ⊆ N (R̂), the normalizer of R̂ in B̂×. Then the

suborder RJ := xR̂x−1∩B of SJ is independent of the choice of x ∈ B̂× for J , and

|π−1([J ])| = [Ŝ× : R̂×]

[S×J : R×J ]
.

Proof. Suppose that Ĵ = x′Ŝ for x′ ∈ B̂× as well. Then there exists u ∈ Ŝ× such

that x′ = xu. Since Ŝ× ⊆ N (R̂), we have

x′R̂x′−1 ∩ B = xuR̂u−1x−1 ∩ B = xR̂x−1 ∩ B = RJ ⊂ SJ ,

which proves the independence of RJ on the choice of x. If I is a locally principal
right R-ideal such that IS = J , then RJ = Ol(I), the associated left order of I.

Conjugating by x ∈ B̂× on the right hand side of (6.3), we obtain

(6.4) π−1([J ]) ' S×J \(xŜ
×x−1)/(xR̂×x−1) = S×J \Ŝ

×
J /R̂

×
J .
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The assumption Ŝ× ⊆ N (R̂) also implies that R̂× E Ŝ×, and hence R̂×J E Ŝ
×
J

and R×J ES
×
J . The left action of S×J on the quotient group Ŝ×J /R̂

×
J factors through

S×J /R
×
J ⊆ Ŝ

×
J /R̂

×
J , and its orbits are the right cosets of S×J /R

×
J in Ŝ×J /R̂

×
J . Thus

|π−1([J ])| = [Ŝ×J : R̂×J ]/[S×J : R×J ] = [Ŝ× : R̂×]/[S×J : R×J ]. �

Remark 6.2. The condition Ŝ× ⊆ N (R̂) implies that R̂× E Ŝ×. However, the
converse does not hold in general. It is enough to provide a counterexample locally

at a prime `, say, ` = 2. Let S2 := Mat2(Z2), and R2 =

(
Z2 2Z2

2Z2 Z2

)
, an Eichler

order of level 4 in S2. Then

R×2 = {x ∈ Mat2(Z2) | x ≡
(

1 0
0 1

)
(mod 2S2)}E S×2 = GL2(Z2).

On the other hand, let u =

(
1 1
0 1

)
∈ S×2 , and y =

(
1 0
0 0

)
∈ R2. Then

uyu−1 =

(
1 1
0 1

)(
1 0
0 0

)(
1 −1
0 1

)
=

(
1 −1
0 0

)
6∈ R2.

Corollary 6.3. Keep the notation and assumption of Lemma 6.1. If the natural

homomorphism S×J → Ŝ
×
J /R̂

×
J is surjective for each ideal class [J ] ∈ Cl(S), then π

is bijective.

Proof. It is enough to show that π is injective. The surjectivity of S×J → Ŝ
×
J /R̂

×
J

implies that the monomorphism S×J /R
×
J ↪→ Ŝ×J /R̂

×
J is an isomorphism, and hence

|π−1([J ])| = [Ŝ×J /R̂
×
J : S×J /R

×
J ] = 1. �

Let D = Dp,∞ be the unique quaternion algebra over Q ramified exactly at p
and ∞, and O ⊂ D a maximal order in D. Let s ∈ {2, 3}, and assume that p 6= s.
Fix an isomorphism O ⊗Z Zs ' Mat2(Zs). We write O(s) for the Eichler order of
level s in O such that O(s) ⊗ Z` = O ⊗ Z` for every prime ` 6= s, and

O(s) ⊗ Zs =

[
Zs Zs
sZs Zs

]
.

The formula for h(O(s)) is given in [11, Theorem 16]:

h(O(s)) =
(p− 1)(s+ 1)

12
+

1

3

(
1−

(
−3

p

))(
1 +

(
−3

s

))
+

1

4

(
1−

(
−4

p

))(
1 +

(
−4

s

))
, for s ∈ {2, 3} and p 6= s.

(6.5)

Proposition 6.4. Suppose that s ∈ {2, 3} and p 6= s. Let Os2(2, 2s) be the order
defined in (5.15). Then

(a) h(O4(2, 4)) = 1
4

(
p−

(
−4
p

))
if p 6= 2;

(b) h(O9(2, 6)) = 1
3

(
p−

(
−3
p

))
if p 6= 3.

Proof. For simplicity, we set Os2 = Os2(2, 2s), and define Os := O(s) ×A2s, which
contains Os2 and is a suborder of index s in O1(2, 2s) = O × A2s. Recall that ps
denotes the unique ramified prime in A2s. We have A2s/ps = Fs, and the canonical
map A×2s → (A2s/ps)

× = F×s is surjective.
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It is straight forward to check that Ô×s ⊆ N (Ôs2), and Ô×s /Ô
×
s2
∼= F×s . Let Z(Os)

be the center of Os. Then Z(Os) = Z×A2s, and its unit group Z(Os)× = {±1}×A×2s
maps surjectively onto Ô×s /Ô

×
s2 . Since Z(Os) = Z(Ol(J)) for every locally principal

right ideal J of Os, the assumptions of Corollary 6.3 are satisfied. Therefore,

h(Os2) = h(Os) = h(O(s))h(A2s) = h(O(s)), for s = 2, 3.

Applying formula (6.5), we obtain

h(O4(2, 4)) = h(O(2)) =
1

4

(
p−

(
−4

p

))
if p 6= 2;

h(O9(2, 6)) = h(O(3)) =
1

3

(
p−

(
−3

p

))
if p 6= 3. �

Next, we assume p 6= 2 and calculate the class numbers of the orders O8(1, 2),
O16(1, 2) ⊂ D2 defined in (5.12). By an abuse of notation, we still write O(2) for

the Eichler order of O of level 2 such that O(2)⊗Z2 =

[
Z2 2Z2

Z2 Z2

]
and O(2)⊗Z` =

O ⊗ Z` for all ` 6= 2. For simplicity, let Os = Os(1, 2) for s = 1, 8, 16, and define
O4 := O(2) × O(2), which is a suborder of O1 of index 4 containing O8. One

checks that Ô×4 ⊆ N (Ô8), and Ô×8 = Ô×4 , so the assumptions of Corollary 6.3 are
automatically satisfied. We have

(6.6) h(O8(1, 2)) = h(O(2) ×O(2)) = h(O(2))2 =
1

16

(
p−

(
−4

p

))2

.

To calculate the class number of O16, we first note that 2O1 ⊂ O16, and the
quotient ring O16/2O1

∼= Mat2(F2) embeds diagonally into O1/2O1
∼= Mat2(F2)2.

In this case, Ô×16 is not normal in Ô×1 , so Ô×1 6⊆ N (Ô16).
Consider the natural surjective map π : Cl(O16) → Cl(O1). If [J ] ∈ Cl(O1) is a

right ideal class of O1 with Ĵ = xÔ1 for an element x ∈ (D̂×)2, then by (6.3) one
has a bijection

(6.7) π−1([J ]) ' x−1O×J x\Ô
×
1 /Ô

×
16, where OJ = Ol(J) = D2 ∩ xÔ1x

−1.

If p 6= 2, 3, then O×J ' C2j1×C2j2 for some 1 ≤ j1, j2 ≤ 3. Here Cn denotes a cyclic
group of order n. Given an arbitrary set X, we write ∆(X) for the diagonal of X2.

Lemma 6.5. (1) Let [J ] ∈ Cl(O1) be a right ideal class of O1. If O×J ' C2j1×C2j2 ,
where 1 ≤ j1, j2 ≤ 3, then there is a bijection π−1([J ]) ' Cj1\S3/Cj2 , where Sn
denotes the symmetric group of n letters.

(2) For 1 ≤ j1, j2 ≤ 3, put cj1,j2 := |Cj1\S3/Cj2 |, whose value is listed in the
table below:

cj1,j2 1 2 3
1 6 3 2
2 3 2 1
3 2 1 2

.

Proof. (1) We may regard C2j1×C2j2 = x−1O×J x as a subgroup of Ô×1 . As 1+2Ô1 ⊂
Ô×16, modulo this subgroup, one has Ô×1 /Ô

×
16 ' (GL2(F2)×GL2(F2))/∆(GL2(F2)).

For any unit ζ ∈ O×, we have either ζ4 = 1 or ζ6 = 1, and Z[ζ] coincides with
the ring of integers of Q(ζ). By a lemma of Serre, if ζ is a root of unity which
is congruent to 1 modulo 2, then ζ = ±1. Thus, for 1 ≤ j ≤ 3, the map C2j →
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GL2(F2) factors through an embedding Cj ' (C2j/C2) ↪→ GL2(F2). Note that
GL2(F2) ' S3. Since cyclic subgroups of order j of S3 are conjugate, the double
coset space (Cj1 × Cj2)\(S3 × S3)/∆(S3) does not depend on how Cj embeds into
S3. Every element of (S3×S3)/∆(S3) is represented by a unique (a, 1) with a ∈ S3.
For (c1, c2) ∈ Cj1 × Cj2 , one has (c1, c2) · (a, 1) = (c1s, c2) ∼ (c1ac

−1
2 , 1). The map

(a, 1) 7→ a yields a bijection (Cj1×Cj2)\(S3×S3)/∆(S3) ' Cj1\S3/Cj2 . Therefore,
there is a bijection

π−1([J ]) ' (Cj1 × Cj2)\GL2(F2)2/∆(GL2(F2)) ' Cj1\S3/Cj2 .

(2) This is clear if one of ji is 1 or 3 as C3 is a normal subgroup of S3. To see
c2,2 = 2, one may view C2 as a Borel subgroup of S3 = GL2(F2) and this follows
from the Bruhat decomposition. �

Remark 6.6. Suppose that p = 3. By [16, Proposition V.3.1], we have h(O) = 1,
and O×/{±1} ' S3. It follows that h(O1) = h(O)2 = 1, and hence Cl(O16) =

π−1([O1]) ' O×1 \Ô
×
1 /Ô

×
16 by (6.3). The same line of argument as that of part (1)

of Lemma 6.5 shows that h(O16) = |(S3)2\(S3)2/∆(S3)| = 1.

Now assume that p 6= 2, 3. For n = 1, 2, 3, put

(6.8) Cln(O) := {[I] ∈ Cl(O) | Ol(I)× ' C2n}, and hn = hn(O) := |Cln(O)|.

By [16, Proposition V.3.2], if p 6= 2, 3, then

h2(O) =
1

2

(
1−

(
−4

p

))
, h3(O) =

1

2

(
1−

(
−3

p

))
,(6.9)

h1(O) = h(O)− h2(O)− h3(O)

=
p− 1

12
− 1

4

(
1−

(
−4

p

))
− 1

6

(
1−

(
−3

p

))
.

(6.10)

Since there are hj1hj2 classes [J ] ∈ Cl(O1) with O×J ' C2j1 × C2j2 , we obtain

(6.11) h(O16) =
∑

1≤j1,j2≤3

hj1hj2cj1,j2 .

Observe that

cj1,j2 =


6
j1j2

if (j1, j2) 6= (2, 2) or (j1, j2) 6= (3, 3);
6
j1j2

+ 1
2 for (j1, j2) = (2, 2);

6
j1j2

+ 4
3 for (j1, j2) = (3, 3).

We can express (6.11) as

h(O16(1, 2)) =
∑

1≤j1,j2≤3

hj1hj2
6

j1j2
+

1

2
h2

2 +
4

3
h2

3

= 6

(
h1 +

h2

2
+
h3

3

)2

+
1

8

(
1−

(
−4

p

))2

+
1

3

(
1−

(
−3

p

))2

=
(p− 1)2

24
+

1

4

(
1−

(
−4

p

))
+

2

3

(
1−

(
−3

p

))
for p 6= 2, 3.

(6.12)
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