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Abstract

This paper is devoted to the establishment of sharper a priori stability and error estimates of
a stabilized finite element method proposed by Barrenechea and Valentin [3] for solving the
generalized Stokes problem, which involves a viscosity ν and a reaction constant σ. With
the establishment of sharper stability estimates and the help of ad hoc finite element projec-
tions, we can explicitly establish the dependence of error bounds of velocity and pressure
on the viscosity ν, the reaction constant σ, and the mesh size h. Our analysis reveals that
the viscosity ν and the reaction constant σ respectively act in the numerator position and
the denominator position in the error estimates of velocity and pressure in standard norms
without any weights. Consequently, the stabilization method is indeed suitable for the gen-
eralized Stokes problem with a small viscosity ν and a large reaction constant σ. The sharper
error estimates agree very well with the numerical results.

Mathematics subject classification: 65N12, 65N15, 65N30, 76M10.
Key words: generalized Stokes equations, stabilized finite element method, error estimates.

1. Introduction and Preliminaries

Let Ω be an open bounded polygonal domain in Rd (d = 2 or 3) with boundary ∂Ω. In this
paper, we will study the stabilized C0 finite element approximations, proposed by Barrenechea
and Valentin in [3], to the following system of generalized Stokes equations with the homoge-
neous velocity boundary condition:

σu− ν∆u +∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
(1.1)
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where u : Ω → Rd is the velocity field and p : Ω → R is the pressure; ν > 0 is the viscosity
constant; σ > 0 is the reaction constant; and f : Ω → Rd is a given source-like function in
(L2(Ω))d.

In general, the finite element approach for solving problem (1.1) is posed as a velocity-
pressure mixed formulation in the standard Galerkin method. However, it is well known that,
for stable and optimally accurate approximations, the pair (V h, Qh) of finite element spaces
for the mixed formulation must satisfy the so-called inf-sup condition,

sup
v∈V h

(∇ · v, q)
‖v‖1

≥ c‖q‖0 ∀ q ∈ Qh, (1.2)

see, e.g., [8], [10], and [25]. This condition prevents the use of standard equal order C0 finite
element spaces for velocity and pressure with respect to the same triangulation that are the
most attractive from the viewpoint of implementation. In order to circumvent the inf-sup
condition, a class of so-called stabilized finite element methods (FEMs) has been developed
and intensively studied for more than thirty years, see, e.g., [6], [7], [9], [11], [12], [15], [21], [22],
[26], [27], [32], [33], [35], and [39]. The stabilized FEMs are formed by adding to the discrete
mixed formulation of the generalized Stokes problem (1.1) with some consistent variational
terms, relating to the residuals of the partial differential equations (cf. [14], [16], [19], [20],
[23], [30], [31], [36], and [37]). With suitable stabilization parameters, the stabilized FEMs are
successful in circumventing the above inf-sup condition.

Typically, the generalized Stokes problem (1.1) may arise from the time discretization (cf.
[38]) of transient Stokes equations or full Navier-Stokes equations by means of an operator
splitting technique, where the reaction constant is given by σ = c(δt)−1 and δt is the time
step. For problems involving fast chemical reactions, a small time step, namely a large σ, is
needed in order to account for the stiffness due to the fast reaction. However, in the context of
stabilization methods, it has been observed that the pressure instabilities may be caused as the
time step δt becomes small compared to the spatial grid size h. Therefore, in recent years, there
has been increasingly a great deal of attention on the theoretical and computational studies
of small time-step instabilities when implicit, finite difference time integration is applied in
combination with finite element stabilization in the spatial semi-discretization, see, e.g., [4],
[5], [14], [17], [19], and [31]. Nowadays, it has been extensively recognized that the stabilized
FEMs are most effective in dealing with the instability in the finite element solution.

In [3], Barrenechea and Valentin proposed a stabilized FEM for solving the generalized
Stokes problem (1.1) in 2D. The unusual feature of this stabilized FEM is that it involves the
subtraction of the stabilization term ∑K∈Th

τK(σuh, σv)0,K from the original discrete mixed fi-
nite element formulation. Numerical results provided in [3] show that the proposed method
can achieve high accuracy and stability. More remarkably, it has been numerically verified
in [3] that for a fixed small viscosity ν, the H1 errors of the resulting finite element solutions of
velocity appear to be uniform in the reaction coefficient σ when σ is large enough.

In this paper, with the help of analysis of the finite element projections for velocity and
pressure, together with a trick using a function ξ(·) of the ratio between ν and σh2

K, we are
able to derive sharper error estimates for the Barrenechea-Valentin stabilized C0 FEM that will
be briefly stated at the end of this section. We first establish two sharper stability estimates,
and then establish the explicit dependence of the error bounds on the viscosity ν, the reaction
constant σ, and the mesh size h. The significant new findings in our analysis can be summa-
rized as follows. The analysis reveals that the viscosity constant ν and the reaction constant
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σ respectively act in the numerator position and the denominator position in the error esti-
mates of velocity and pressure in standard norms without any weights. In particular, up to
the regularity-norms of the exact solution pair (u, p), we can find that the H1 semi-norm error
of velocity is independent of the viscosity ν and the H1 semi-norm error of pressure is inde-
pendent of the reaction constant σ. Moreover, in a convex polygonal domain Ω, we show that
the L2 norm error estimates of velocity behave in the same manner as those of H1 semi-norm
error estimates with respect to σ and ν, by one order higher with respect to the mesh size h.
We emphasize again that all the error estimates are measured in the standard H1 semi-norm
and L2 norm without any weights of σ, ν and h. To the authors’ knowledge, for example, the
commonly known H1 norm error estimates in the literature for the velocity are measured in
the
√

ν-weighted H1 norm (e.g., see [24] and [40]). Consequently, our analysis proves that the
stabilization method proposed in [3] is indeed particularly suitable for the generalized Stokes
problem with small ν and large σ. The above theoretical results agree very well with the nu-
merical results reported in [3]. In this paper, further numerical results will be presented to
illustrate the theoretical results obtained.

In the rest of this section, we will review briefly the stabilized FEM proposed in [3] and
the results of stability and error estimates obtained therein. Let {Th}0<h≤1 be a family of
triangulations of Ω, consisting of triangles if d = 2 or tetrahedra if d = 3 (cf. [13]). The mesh
size h is defined as h = max{hK : K ∈ Th}, where hK denotes the diameter of element K. We
always assume that the family {Th}0<h≤1 of triangulations is shape-regular (see [8], [18]), i.e.,
there exists a constant α > 0, independent of h and K, such that hK ≤ αρK for all K ∈ Th
and Th ∈ {Th}0<h≤1, where ρK is the supremum of diameters of the balls inscribed in K. As
usual, with a nonnegative integer l, we denote by (·, ·)l,D, ‖ · ‖l,D and | · |l,D the associated
inner product, norm and semi-norm in Hl(D), respectively, where D is a given subset of Ω.
When D = Ω, we briefly write (·, ·)l,Ω = (·, ·)l for l ≥ 1 and (·, ·)0,Ω = (·, ·) if l = 0, and
‖ · ‖l,Ω = ‖ · ‖l for l ≥ 0. In the case l = 0, since ‖ · ‖0,D = | · |0,D, we use ‖ · ‖0,D to denote the
L2 norm on D.

Let V h ⊂ (H1
0(Ω))d and Qh ⊂ H1(Ω) ∩ L2

0(Ω) be the finite element spaces of velocity and
pressure, respectively, where L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω q = 0}. For d = 2 and the triangulation
Th is composed of triangles, Barrenechea and Valentin proposed and analyzed a stabilized
FEM in [3] for the generalized Stokes problem (1.1) as follows: Find (uh, ph) ∈ V h × Qh such
that

BBV((uh, ph), (v, q)) = FBV(v, q) ∀ (v, q) ∈ V h ×Qh, (1.3)

where the bilinear form BBV and linear form FBV are defined as

BBV((u, p), (v, q)) = σ(u, v) + ν(∇u,∇v)− (p,∇ · v) + (q,∇ · u)

− ∑
K∈Th

τK(σu− ν∆u +∇p, σv− ν∆v−∇q)0,K, (1.4)

FBV((v, q)) = ( f , v)− ∑
K∈Th

τK( f , σv− ν∆v−∇q)0,K. (1.5)

The factor τK is the so-called stabilization parameter, which is element-by-element defined as

τK =
h2

K
σh2

Kξ(λK) + 4ν/mk
, (1.6)
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with
ξ(λK) = max{λK, 1}, λK =

4ν

mkσh2
K

, mk = min
{1

3
, Ck

}
,

and {
Ckh2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K ∀ v ∈ Vk,

Vk = {v ∈ C0(Ω) : v|K ∈ Pk(K), ∀ K ∈ Th}, k ≥ 1,

where Pk(K) denotes the finite dimensional space of polynomials of degree not greater than k
on the triangle K ∈ Th and suitable values of the constant Ck in the local inverse inequality can
be found in [28] for various orders k of finite elements. For example, if k = 1 then C1 can be
taken as any positive constant since ‖∆v‖0,K = 0, while if k = 2 then we take C2 = 1/42.

The feature of this stabilization method is the subtraction of a term ∑K∈Th
τK(σuh, σv)0,K

from σ(uh, v)0,Ω, when compared with other stabilized methods (e.g., see [40]). This feature
was also applied to advection-diffusion-reaction equations (e.g., [16], [23], and [30]). The fol-
lowing stability estimates and error bounds of the Barrenechea-Valentin FEM are proved in [3]:

• Stability estimates (Lemma 3.1 and Lemma 4.2 in [3]): Given the bilinear form BBV as
above, we have the following stability estimates:

(i) There exists a constant cΩ > 0, depending only on Ω, such that

BBV((v, q), (v, q)) ≥ cΩν‖v‖2
1 + ∑

K∈Th

τK‖∇q‖2
0,K ∀ (v, q) ∈ V h ×Qh. (1.7)

(ii) There exists a constant c(σ, ν) > 0, which depends on σ and ν, such that

sup
(v,q)∈V h×Qh

BBV((u, p), (v, q))
(‖v‖2

1 + ‖q‖2
0)

1/2
≥ c(σ, ν)

(
‖u‖2

1 + ‖p‖2
0

)1/2
∀ (u, p) ∈ V h ×Qh.

(1.8)

• Error estimates (Theorem 3.1 and Theorem 4.1 in [3]): Assume that the solution (u, p) of
problem (1.1) belongs to (Hk+1(Ω) ∩ H1

0(Ω))2 × (H`+1(Ω) ∩ L2
0(Ω)). Let (uh, ph) ∈ V h ×

Qh be the finite element solution, where V h = (Vk ∩ H1
0(Ω))2 and Qh = V` ∩ L2

0(Ω). Then

(i) There exists c(σ, ν) > 0, independent of h, but depending on σ and ν, such that

‖u− uh‖1 +
(

∑
K∈Th

τK‖∇(p− ph)‖2
0,K

)1/2

≤ c(σ, ν)
max{σ + 1, ν + 1, 1√

4ν
}

min{cΩν, 1}

(
hk‖u‖k+1 + h`+1‖p‖`+1

)
. (1.9)

(ii) There exists c(σ, ν) > 0, independent of h, but depending on σ and ν, such that

‖u− uh‖1 + ‖p− ph‖0 ≤ c(σ, ν)max
{

σ, ν + 1,
1

4ν

}(
hk‖u‖k+1 + h`‖p‖`

)
. (1.10)

Though above estimates are optimal, but it is not clear how the constants c(σ, ν) in these sta-
bility and error estimates vary with σ and ν. In the following sections, we are going to prove
sharper stability and error estimates of the Barrenechea-Valentin stabilized FEM, revealing
how the two constants σ and ν explicitly act on the stability and the error estimates.

For comparisons, we briefly state the main results of the error bounds obtained in this
paper. Let (uh, ph) ∈ V h × Qh be the finite element solution pair and (u, p) the exact solution
pair. Assuming quasi-uniform meshes with hK ≥ ch, we have the following error estimates:
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• H1 semi-norm error bounds of velocity (cf. Theorem 3.1 below):

‖∇(u− uh)‖0 ≤ c
(

hk|u|k+1 +
h`

max{σh2, 4ν/m} |p|`
)

≤ c
(

hk|u|k+1 +
h`−2

σ
|p|`

)
, (1.11)

‖∇(u− uh)‖0 ≤ c
(

hk|u|k+1 +
h`+1

max{σh2, 4ν/m} |p|`+1

)
≤ c

(
hk|u|k+1 +

h`−1

σ
|p|`+1

)
. (1.12)

• L2 norm error bounds of velocity in convex domain (cf. Theorem 4.1 below):

‖u− uh‖0 ≤ c
(

hk+1|u|k+1 +
h`+1

max{σh2, 4ν/m} |p|`
)

≤ c
(

hk+1|u|k+1 +
h`−1

σ
|p|`

)
, (1.13)

‖u− uh‖0 ≤ c
(

hk+1|u|k+1 +
h`+2

max{σh2, 4ν/m} |p|`+1

)
≤ c

(
hk+1|u|k+1 +

h`

σ
|p|`+1

)
. (1.14)

• H1 semi-norm error bounds of pressure (cf. Theorem 3.2 below):

‖∇(ph − p)‖0 ≤ c
(

h`−1|p|` + νhk−1|u|k+1

)
, (1.15)

‖∇(ph − p)‖0 ≤ c
(

h`|p|`+1 + νhk−1|u|k+1

)
. (1.16)

We remark that all the constants c are independent of σ, ν, h, u, and p.
The remainder of this paper is organized as follows. We derive sharp a priori stability esti-

mates in Section 2 and error estimates in Section 3. In Section 4, we give the L2 error estimates
of the velocity in convex polygonal domains. We consider the practical values among ν, σ and
h and then derive some improved error estimates in Section 5. Some numerical experiments
are reported in Section 6. A brief summary and conclusion are given in Section 7.

2. Sharper a Priori Stability Estimates

Let V h and Qh be the continuous piecewise finite element spaces for velocity and pressure,
respectively, defined as follows:

V h = (Vk ∩ H1
0(Ω))d, Qh = V` ∩ L2

0(Ω),

Vk = {v ∈ C0(Ω) : v|K ∈ Pk(K), ∀ K ∈ Th}, k, ` ≥ 1,
(2.1)

where Pk(K) denotes the finite dimensional space of polynomials of degree not greater than k
on the triangle or tetrahedron K ∈ Th, see [13]. To state the finite element problem, we first
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define

B((u, p), (v, q)) = σ(u, v) + ν(∇u,∇v)− (p,∇ · v)− (q,∇ · u)

− ∑
K∈Th

τK(σu− ν∆u +∇p, σv− ν∆v +∇q)0,K, (2.2)

F(v, q) = ( f , v)− ∑
K∈Th

τK( f , σv− ν∆v +∇q)0,K, (2.3)

τK =
h2

K
σh2

Kξ(λK) + 4ν/mk
, (2.4)

ξ(λK) = max{λK, 1}, λK =
4ν

mkσh2
K

, (2.5)

with m1 = 1/3 for linear elements on triangles (d = 2) or tetrahedra (d = 3), and otherwise,
mk is taken as any positive number satisfying

0 < mk < 4γCk, (2.6)

where γ is a given number with 0 < γ < 2−
√

3 and Ck > 0 is a given constant satisfying
Ckh2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K ∀ v ∈ Vk, if ∆v 6= 0 on K,

Ck >
1

12γ
, if ∆v = 0 on K.

(2.7)

The first inequality in (2.7) is a classical local inverse estimate for finite dimensional func-
tions. As tabulated in [28], the constant Ck which may differ from element to element depends
only on the ratio of hK/ρK and on the integer k of Vk. Under the shape-regular assumption,
however, all Ck can be independent of h and K. We therefore always assume that Ck depends
only on the shape-regularity constant α and the integer k of Vk. Note that only for linear el-
ements on triangles (or tetrahedra for d = 3) we generally have ∆v = 0. In that case, the
constant C1 can be any positive constant and we take m1 = 1/3. However, for a general pur-
pose, we put C1 > 1/(12γ) with a given 0 < γ < 2 −

√
3, according to our analysis later

on (see Proposition 2.1 and Theorem 2.1). The choice m1 = 1/3 is well-known for linear ele-
ments on triangles or tetrahedra in the literature of stabilized methods, which may come from
a multiscale-enrichment stabilized approach, e.g., see [1]. Also, note that the choice of mk is
more flexible here, with mk < 4γCk for any given 0 < γ < 2−

√
3. One may always choose a

given value for γ, although any value of γ in the interval (0, 2−
√

3) works. The well-known
choice for mk in the literature of stabilized methods is 0 < mk ≤ Ck (see, e.g., [3] and [23]). This
latter choice is also valid in our analysis, with a value for γ satisfying 1/4 < γ < 2−

√
3. To

simplify the notations, in the rest of this paper, we shall exclusively put the following notations

ξ := ξ(λK), m := mk, C := Ck.

The stabilized finite element problem we shall consider in this paper is to find (uh, ph) ∈
V h ×Qh such that

B((uh, ph), (v, q)) = F(v, q) ∀ (v, q) ∈ V h ×Qh. (2.8)

The bilinear form B given in (2.2) is symmetric, slightly different from BBV in (1.4). Accord-
ingly, to keep the consistency property, we use a different linear form F given in (2.3). The
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reason why we would rather consider a symmetric method is that a symmetric linear sys-
tem resulting from the finite element method would be more feasible for iterative solutions.
Throughout this paper, we still call (2.1)-(2.8) the Barrenechea-Valentin stabilized FEM.

In the sequel, we shall investigate the stability of the finite element problem (2.8). For that
goal, we first show a proposition that will be used later on in the analysis.

Proposition 2.1. Let 0 < γ < 2−
√

3 and 0 < m < 4γC. Then for all K ∈ Th, we have

1
γ
×

γ
(
σh2

Kξ + ν(4/m− C−1)
) (

σh2
K(ξ − 1) + 4ν/m

)
− σνh2

KC−1(
σh2

Kξ + 4ν/m
) (

σh2
K(ξ − 1) + 4ν/m

)
≥ 4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

4(2ξ − 1)
≥ 4γ−mC−1

8
> 0. (2.9)

Proof. The last inequality in (2.9) is obvious, because of 0 < m < 4γC. We next show the
first and the second inequalities in (2.9). For convenience, letting h := hK, we have

1
γ
×

γ
(
σh2ξ + ν(4/m− C−1)

) (
σh2(ξ − 1) + 4ν/m

)
− σνh2C−1(

σh2ξ + 4ν/m
)(

σh2(ξ − 1) + 4ν/m
)

=
mσ2h4ξ(ξ − 1) + σνh2

(
4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

)
γ−1 + (4−mC−1)4ν2/m

mσ2h4ξ(ξ − 1) + 4σνh2(2ξ − 1) + 16ν2/m

=
4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

4(2ξ − 1)

×
4σνh2γ−1 +

4mσ2h4ξ(ξ − 1)
4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

+
(16ν2/m)(4−mC−1)

4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

4σνh2 +
mσ2h4ξ(ξ − 1)

2ξ − 1
+

16ν2/m
2ξ − 1

:= T1 × T2.

Since γ−1 > 1, if there hold the following two inequalities (2.10) and (2.11),

4
4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

≥ 1
2ξ − 1

(2.10)

and
4−mC−1

4γξ −mC−1 + γ(ξ − 1)(4−mC−1)
≥ 1

2ξ − 1
, (2.11)

then we have T2 ≥ 1. That is to say, the first inequality in (2.9) holds, provided we have (2.10)
and (2.11). Now we are going to prove (2.10) and (2.11). From the obvious facts that 0 <

γ < 2−
√

3 and ξ ≥ 1, the inequality (2.10) easily follows. Regarding (2.11), we respectively
consider the two cases ξ = 1 if 4ν ≤ mσh2 and ξ = 4ν

mσh2 if 4ν > mσh2. In the case ξ = 1, we
have

4−mC−1

4γξ −mC−1 + γ(ξ − 1)(4−mC−1)
=

4−mC−1

4γ−mC−1 ≥ 1 =
1

2ξ − 1
.

In the case ξ = 4ν
mσh2 with 4ν > mσh2, to have (2.11), by inserting ξ = 4ν

mσh2 , we find that (2.11)
holds if

mσh2 ≤ 32ν(1− γ)− 4mC−1ν(2− γ)

4(1− γ)−mC−1(2− γ)
,
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where 0 < γ < 2−
√

3 is chosen to ensure positive numerator and denominator in the above
for all 0 < m < 4γC. But, mσh2 < 4ν, it suffices to require

4ν ≤ 32ν(1− γ)− 4mC−1ν(2− γ)

4(1− γ)−mC−1(2− γ)
.

This inequality holds true indeed from a simple manipulation. Consequently, (2.11) is proven.
Next, we show the second inequality in (2.9). We consider the two choices, ξ = 1 and

ξ = 4ν
mσh2 with mσh2 < 4ν. If ξ = 1 we have

T1 :=
4γξ −mC−1 + γ(ξ − 1)(4−mC−1)

4(2ξ − 1)
=

4γ−mC−1

4
.

If ξ = 4ν
mσh2 , inserting this ξ and using mσh2 < 4ν, we have

T1 =
32νγ−

(
4γ + (1− γ)mC−1)mσh2 − 4νγmC−1

4(8ν−mσh2)

≥
32νγ−

(
4γ + (1− γ)mC−1)4ν− 4νγmC−1

32ν
=

4γ−mC−1

8
.

Hence, whatever ξ is, there holds the second inequality in (2.9). The proof is completed. 2

The result in Proposition 2.1 is obtained from a careful investigation of the two choices of ξ.
Such a trick will be frequently used in the sequel, in order to establish the explicit dependence
on σ and ν in the error estimates. For the sake of notations, we re-state the result of Proposition
2.1 in the following:

1−
σντ2

K
γ(1− στK)Ch2

K
≥ C̃ :=

4γC−m
8C

> 0.

Such inequality is uniform in hK, σ and ν. We are now in a position to give the stability results.
To do so, with τK being given by (2.4), we first define some norms, which will be used for the
establishment of the stability, as follows:

|v|21,ν := νC̃‖∇v‖2
0, (2.12)

|v|20,h := (1− γ)σ ∑
K∈Th

(1− στK)‖v‖2
0,K, (2.13)

|q|21,h := ∑
K∈Th

τK‖∇q‖2
0,K, (2.14)

‖(v, q)‖2
h := |v|21,ν + |v|20,h + |q|

2
1,h. (2.15)

Here we define the mesh-dependent L2 norm | · |0,h for velocity that is helpful for us to derive
the optimal L2 error bound for velocity in this paper, even if we do not apply the Aubin-
Nitsche duality argument which is only applicable when Ω is convex or smooth [13]. See
Corollary 3.1 and (5.5) in Section 5.

We remark that, in this paper, we shall use the letter c (possibly carrying subscripts of num-
bers) to denote a generic positive constant, which may be different at different occurrences. If
not indicated explicitly, such c, which may depend on Ω, the shape-regularity constant α of
triangulations and the integers k and ` in the approximations, is always independent of h, σ,
ν, K ∈ Th, and of all the functions introduced.

We state the first result of the stability.
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Theorem 2.1. Let 0 < γ < 2−
√

3 and 0 < m < 4γC. Then for all (v, q) ∈ V h ×Qh, we have

B((v, q), (v,−q)) ≥ ‖(v, q)‖2
h.

Proof. From (2.2), we have

B((v, q), (v,−q)) = σ‖v‖2
0 + ν‖∇v‖2

0 − ∑
K∈Th

τK(σv− ν∆v, σv− ν∆v)0,K + ∑
K∈Th

τK‖∇q‖2
0,K

= ν‖∇v‖2
0 + ∑

K∈Th

τK‖∇q‖2
0,K + σ ∑

K∈Th

(1− στK)‖v‖2
0,K

+ ∑
K∈Th

2σντK(v, ∆v)0,K − ∑
K∈Th

ν2τK‖∆v‖2
0,K,

where, from the Young’s inequality 2ab ≤ εa2 + ε−1b2 for any ε > 0, choosing ε = γ, we have

∑
K∈Th

2σντK(v, ∆v)0,K ≥ −γσ ∑
K∈Th

(1− στK)‖v‖2
0,K −

σ

γ ∑
K∈Th

ν2τ2
K

1− στK
‖∆v‖2

0,K,

and, from the local inverse estimate Ch2
K‖∆v‖2

0,K ≤ ‖∇v‖2
0,K as given in (2.7), we have

B((v, q), (v,−q)) ≥ ν ∑
K∈Th

(
1−

σντ2
K

γ(1− στK)Ch2
K

)
‖∇v‖2

0,K

+(1− γ)σ ∑
K∈Th

(1− στK)‖v‖2
0,K + ∑

K∈Th

τK‖∇q‖2
0,K.

Applying Proposition 2.1 and according to (2.12), (2.13), (2.14), (2.15), we obtain the desired
stability. 2

Theorem 2.1 provides a stability in L2 norm for the pressure. In fact, considering the two
choices ξ = 1, with 4ν ≤ mσh2

K, and ξ = 4ν
mσh2

K
, with 4ν > mσh2

K, from the Poincaré inequality

(e.g., see [25])
‖q‖0 ≤ c‖∇q‖0 ∀ q ∈ H1(Ω) ∩ L2

0(Ω), (2.16)

we have

|q|21,h ≥ min
{ 1

2σ
, min

K∈Th

h2
K

8ν/m

}
‖q‖2

0. (2.17)

Since the numerical difficulties are often due to 4ν ≤ mσh2
K, we can see that (2.17) already

provides a discrete but h-independent stability in L2 norm for the pressure. In other words, if
4ν ≤ mσh2

K for all K ∈ Th, from (2.17) we have

|q|21,h ≥
1

2σ
‖q‖2

0. (2.18)

In what follows, we shall establish a second stability result, where an h-independent L2 norm
is used for the pressure, regardless of the values of σ, ν and hK. For that goal, we first recall a
lemma.

Lemma 2.1. For all p ∈ Qh, there exists function w ∈ V h such that

(∇ ·w, p) ≥ c1‖p‖2
0 − c2(σ + ν)|p|21,h, ‖w‖1 ≤ c3‖p‖0.
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Proof. This lemma follows from Lemma 4.1 in [3]. 2

We then define a norm with an L2 norm for the pressure as follows:

|||(u, p)|||2h = ‖(u, p)‖2
h + (σ + ν)−1‖p‖2

0, (2.19)

where ‖(u, p)‖h is given by (2.15). We have introduced a (σ + ν)-weighted L2 norm for the
pressure, i.e.,

√
(σ + ν)−1‖ · ‖0 (which is not presented in [3]). We shall use this norm to

derive the L2 norm error bound for the pressure. On the other hand, ν ≤ σ generally, so we
have 1/(σ + ν) ≥ 1/(2σ), and the norm

√
(σ + ν)−1‖ · ‖0 amounts to

√
1/(2σ)‖ · ‖0, see also

(2.18).
Now the second result of the stability is stated in the following. We have explicitly worked

out how the stability constants in Theorem 2.1 and Theorem 2.2 depend on ν, σ and hK. In fact,
the dependence is explicitly reflected in the norms used.

Theorem 2.2. Let 0 < γ < 2−
√

3 and 0 < m < 4γC. Then we have

sup
(v,q)∈V h×Qh

B((u, p), (v, q))
|||(v, q)|||h

≥ c|||(u, p)|||h ∀ (u, p) ∈ V h ×Qh.

Proof. For any given p ∈ Qh, from Lemma 2.1, there exists a w ∈ V h such that

(∇ ·w, p) ≥ c1‖p‖2
0 − c2(σ + ν)|p|21,h, ‖w‖1 ≤ c3‖p‖0.

With this w, we have

B((u, p), (−w, 0)) = −σ(u, w)− ν(∇u,∇w) + (p,∇ ·w)

+ ∑
K∈Th

τK(σu− ν∆u +∇p, σw− ν∆w)0,K

= −σ ∑
K∈Th

(1− στK)(u, w)0,K − ν(∇u,∇w) + (p,∇ ·w)

− ∑
K∈Th

τKσν(∆u, w)0,K − ∑
K∈Th

τKσν(u, ∆w)0,K + ∑
K∈Th

τKν2(∆u, ∆w)0,K

+ ∑
K∈Th

τKσ(∇p, w)0,K − ∑
K∈Th

τKν(∇p, ∆w)0,K,

where the lower bound of the term (p,∇ · w) is known, and the rest seven terms will be
estimated one-by-one below. For this purpose, we first list some inequalities we shall use for
all K ∈ Th and for all k ≥ 1. By considering the two choices ξ = 1 for 4ν ≤ mσh2

K and
ξ = 4ν/(mσh2

K) for 4ν > mσh2
K, we can show the following three inequalities:

τKσh−1
K
√

νC−1/2 =
σhK
√

νC−1/2

σh2
Kξ + 4ν/m

≤
√

mσC−1/2

2
,

τ2
Kσν2C−1h−2

K
1− στK

=
h2

Kσν2C−1

(σh2
Kξ + 4ν/m)(σh2

K(ξ − 1) + 4ν/m)
≤ mνC−1

4
,

τKν2C−1h−2
K =

ν2C−1

σh2
Kξ + 4ν/m

≤ mC−1ν

4
.
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In fact, to show the above first inequality, for example, when ξ = 1 for 4ν ≤ mσh2
K, we have

σhK
√

νC−1/2

σh2
Kξ + 4ν/m

=
σhK
√

νC−1/2

σh2
K + 4ν/m

≤
σhK

√
mσh2

K/4C−1/2

σh2
K + 4ν/m

=
σh2

K
√

mσC−1/2

2(σh2
K + 4ν/m)

≤
σh2

K
√

mσC−1/2

2σh2
K

=

√
mσC−1/2

2
;

when ξ = 4ν/(mσh2
K) for 4ν > mσh2

K, we have

σhK
√

νC−1/2

σh2
Kξ + 4ν/m

=
σhK
√

νC−1/2

8ν/m
=

σhKmC−1/2

8
√

ν

≤ σhKmC−1/2

8
√

mσh2
K/4

=

√
mσC−1/2

4
<

√
mσC−1/2

2
.

Other inequalities can be similarly shown. In addition, since ξ ≥ 1, the following two inequal-
ities obviously hold:

στK =
σh2

K
σh2

Kξ + 4ν/m
≤ 1 and 0 < 1− στK =

σh2
K(ξ − 1) + 4ν/m
σh2

Kξ + 4ν/m
≤ 1.

We shall also use the Young’s inequality ab ≤ ε
2 a2 + 1

2ε b2 for all ε > 0.
Considering the first term, from the Cauchy-Schwarz inequality, the Young’s inequality,

the inequality 1− στK ≤ 1, and the norm (2.13), we have

−σ ∑
K∈Th

(1− στK)(u, w)0,K ≥ −σ ∑
K∈Th

(1− στK)‖u‖0,K‖w‖0,K

≥ − εσ

2(1− γ) ∑
K∈Th

(1− στK)‖w‖2
0,K −

1
2ε

(1− γ)σ ∑
K∈Th

(1− στK)‖u‖2
0,K

≥ − εσ

2(1− γ)
‖w‖2

0 −
1
2ε
|u|20,h.

Considering the second term, from the Cauchy-Schwarz inequality, the Young’s inequality
and the norm (2.12), we have

−ν(∇u,∇w) ≥ −ν‖∇u‖0‖∇w‖0 ≥ −
εν

2C̃
‖∇w‖2

0 −
1
2ε
|u|21,ν.

Considering the third term, from the Cauchy-Schwarz inequality, the local inverse estimate
Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K, the inequality τKσh−1
K
√

νC−1/2 ≤
√

mσC−1/2/2, the norm (2.12), and
the Young’s inequality, we have

− ∑
K∈Th

τKσν(∆u, w)0,K ≥ − ∑
K∈Th

τKσν‖∆u‖0,K‖w‖0,K

≥ − ∑
K∈Th

τKσh−1
K νC−1/2‖∇u‖0,K‖w‖0,K

≥ −
√

ν
√

mσC−1/2

2
‖∇u‖0‖w‖0

≥ − εmσ

8CC̃
‖w‖2

0 −
1
2ε
|u|21,ν.
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Considering the fourth term, from the Cauchy-Schwarz inequality, the local inverse es-
timate Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K, the norm (2.13), the inequality τ2
Kσν2C−1h−2

K /(1 − στK) ≤
mνC−1/4, and the Young’s inequality, we have

− ∑
K∈Th

τKσν(u, ∆w)0,K ≥ − ∑
K∈Th

τKσν‖u‖0,K‖∆w‖0,K

≥ − ∑
K∈Th

τKσνC−1/2h−1
K ‖∇w‖0,K‖u‖0,K

≥ −
(

∑
K∈Th

τ2
Kσν2C−1h−2

K
1− στK

‖∇w‖2
0,K

)1/2 1√
1− γ

|u|0,h

≥ − εmν

8C(1− γ)
‖∇w‖2

0 −
1
2ε
|u|20,h.

Considering the fifth term, from the Cauchy-Schwarz inequality, the local inverse estimate
Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K, the norm (2.12), the inequality τKν2C−1h−2
K ≤ mνC−1/4, and the

Young’s inequality, we have

∑
K∈Th

τKν2(∆u, ∆w)0,K ≥ − ∑
K∈Th

τKν2C−1h−2
K ‖∇w‖0,K‖∇u‖0,K

≥ −mνC−1

4
‖∇w‖0‖∇u‖0 = − m

√
ν

4CC̃1/2
‖∇w‖0|u|1,ν

≥ − εm2ν

32C2C̃
‖∇w‖2

0 −
1
2ε
|u|21,ν.

Considering the sixth term, from the Cauchy-Schwarz inequality, the inequality στK ≤ 1,
the norm (2.14), and the Young’s inequality, we have

∑
K∈Th

τKσ(∇p, w)0,K ≥ ∑
K∈Th

τKσ‖∇p‖0,K‖w‖0,K

≥ −
(

∑
K∈Th

τKσ2‖w‖2
0,K

)1/2
|p|1,h

≥ − εσ

2
‖w‖2

0 −
1
2ε
|p|21,h.

Considering the seventh term, from the Cauchy-Schwarz inequality, the local inverse es-
timate Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K, the norm (2.14), the inequality τKν2C−1h−2
K ≤ mνC−1/4, and

the Young’s inequality, we have

− ∑
K∈Th

τKν(∇p, ∆w)0,K ≥ − ∑
K∈Th

τKν‖∇p‖0,K‖∆w‖0,K

≥ − ∑
K∈Th

τKνC−1/2h−1
K ‖∇p‖0,K‖∇w‖0,K

≥ −
(

∑
K∈Th

τKν2C−1h−2
K ‖∇w‖2

0,K

)1/2
|p|1,h

≥ − εmν

8C
‖∇w‖2

0 −
1
2ε
|p|21,h.

Combining all the above and the Friedrichs-Poincaré inequality (e.g., see [25])

‖z‖0 ≤ c4‖∇z‖0 ∀ z ∈ (H1
0(Ω))d, (2.20)
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we have

B((u, p), (−w, 0))

≥
{

c1 − ε
( c2

4σ

2(1− γ)
+

ν

2C̃
+

mσc2
4

8CC̃
+

mν

8C(1− γ)
+

m2ν

32C2C̃
+

c2
4σ

2
+

mν

8C

)}
‖p‖2

0

− 1
2ε

(2|u|20,h + 2|p|21,h + 3|u|21,ν)− c2(σ + ν)|p|21,h,

where

c2
4σ

2(1− γ)
+

ν

2C̃
+

mσc2
4

8CC̃
+

mν

8C(1− γ)
+

m2ν

32C2C̃
+

c2
4σ

2
+

mν

8C

≤ (σ + ν)
( c2

4
2(1− γ)

+
1

2C̃
+

mc2
4

8CC̃
+

m
8C(1− γ)

+
m2

32C2C̃
+

c2
4

2
+

m
8C

)
:= c5(σ + ν).

Now choosing

ε =
c1

2c5(σ + ν)

and c6 := 3c5/c1 + c2, we obtain

B((u, p), (−w, 0)) ≥ c1

2
‖p‖2

0 − c6(σ + ν)‖(u, p)‖2
h.

Choosing

(v, q) = (u− δw,−p), δ =
1

2c6(σ + ν)
,

and putting c7 := min(1/2, c1/(4c6)), we have

B((u, p), (v, q)) = δB((u, p), (−w, 0)) + B((u, p), (u,−p))

≥ δc1/2‖p‖2
0 +

(
1− δc6(σ + ν)

)
‖(u, p)‖2

h

=
c1

4c6(σ + ν)
‖p‖2

0 +
1
2
‖(u, p)‖2

h

≥ c7|||(u, p)|||2h.

In addition, since
|w|0,h ≤

√
σ‖w‖0, |w|1,ν =

√
νC̃‖∇w‖0,

it can be verified that

|||(v, q)|||h = |||(u− δw,−p)|||h ≤ c8|||(u, p)|||h.

Finally, we obtain the desired stability estimate, with the constant c := c7/c8. This completes
the proof. 2

3. Sharper a Priori Error Estimates

With the stability established in the previous section, we now can analyze the error estimates.
We first recall the classical finite element interpolation properties (see [13] and [25]):

k ≥ 1, 2 ≤ t ≤ k + 1, ` ≥ 1, 1 ≤ s ≤ `+ 1,
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‖u− Ihu‖0,K ≤ cht
K|u|t,K, (3.1)

‖∇(u− Ihu)‖0,K ≤ cht−1
K |u|t,K, (3.2)

‖∆(u− Ihu)‖0,K ≤ chk−1
K |u|k+1,K, (3.3)

‖p− Jh p‖0 ≤ chs‖p‖s, (3.4)

‖∇(p− Jh p)‖0,K ≤ chs−1
K ‖p‖s,DK , (3.5)

where DK denotes the union of all support sets of basis functions in P`(K) on K, and Ih is
the standard nodal-based interpolation operator and Jh is the Clément interpolation operator,
with an obvious modification so that

∫
Ω Jh p = 0, i.e, Jh p ∈ L2

0(Ω).
For a given p ∈ H1(Ω) ∩ L2

0(Ω), we define a finite element projection p̃ ∈ Qh, such that

∑
K∈Th

τK(∇ p̃,∇q)0,K = ∑
K∈Th

τK(∇p,∇q)0,K ∀ q ∈ Qh. (3.6)

The unique existence of such a p̃ ∈ Qh is because that | · |1,h is a norm over Qh. Taking

q = p̃− Jh p,

we have

|q|21,h = ∑
K∈Th

τK(∇( p̃− Jh p),∇q)0,K = ∑
K∈Th

τK(∇(p− Jh p),∇q)0,K ≤ |p− Jh p|1,h|q|1,h,

that is,
| p̃− Jh p|1,h ≤ |p− Jh p|1,h,

and by the triangle inequality we have

|p− p̃|1,h ≤ 2|p− Jh p|1,h. (3.7)

Remark 3.1. Due to the Poincaré inequality (2.16), we can obtain the error estimates for ‖p − p̃‖0,
with the same order in h as in the error estimates for ‖∇(p − p̃)‖0. On the other hand, since τK is
element-dependent, it seems to be difficult if one can apply the classical Aubin-Nitsche duality argument
to obtain a better estimate of ‖p− p̃‖0. However, if τK is the same for all K ∈ Th, then p̃ is the standard
finite element projection [25], satisfying the classical result ‖p− p̃‖0 ≤ ch‖∇(p− p̃)‖0 for a convex
domain Ω.

We remark that the stabilization method (2.8) is a consistent formulation, since (2.8) is satis-
fied when the finite element solution (uh, ph) is replaced by the exact solution (u, p) of problem
(1.1). As a consequence, we have the following consistency or orthogonality property:

B((u, p)− (uh, ph), (v, q)) = 0 ∀ (v, q) ∈ V h ×Qh. (3.8)

In Lemma 3.1 below, we obtain the error bounds between the finite element solutions and
the finite element interpolations of the exact solutions, where the argument and the results are
critical for all the analysis and results obtained in the sequel.
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Lemma 3.1. Let (uh, ph) ∈ V h ×Qh denote the finite element solution pair to problem (2.8). Assume
that the exact solution pair (u, p) ∈ (Hk+1(Ω) ∩ H1

0(Ω))d × (H`(Ω) ∩ L2
0(Ω)) for k, ` ≥ 1. Choos-

ing ũ = Ihu ∈ V h satisfying (3.1), (3.2) and (3.3) and p̃ ∈ Qh satisfying (3.6) and (3.7), where Jh p
satisfies (3.4) and (3.5), we have

‖∇(uh − ũ)‖0 ≤ c
(

hk|u|k+1 +
h`−1

σ
max
K∈Th

h−1
K |p|`

)
,

|uh − ũ|0,h ≤ c
√

ν
(

hk|u|k+1 +
h`−1

σ
max
K∈Th

h−1
K |p|`

)
,

|ph − p̃|1,h ≤ c
√

ν
(

hk|u|k+1 +
h`−1

σ
max
K∈Th

h−1
K |p|`

)
,

‖ph − p̃‖0 ≤ c
√
(σ + ν)ν

(
hk|u|k+1 +

h`−1

σ
max
K∈Th

h−1
K |p|`

)
,

where | · |0,h and | · |1,h are given by (2.13) and (2.14), respectively.

Proof. Set (w, z) = (uh − ũ, ph − p̃) ∈ Vh × Qh, where ũ = Ihu. We have from the stability
in Theorem 2.2 and the orthogonality property (3.8) that

c|||(w, z)|||h ≤ sup
(v,q)∈V h×Qh

B((w, z), (v, q))
|||(v, q)|||h

, (3.9)

and

B((w, z), (v, q)) = B((u− ũ, p− p̃), (v, q))

= σ(u− ũ, v) + ν(∇(u− ũ),∇v)− (p− p̃,∇ · v)− (q,∇ · (u− ũ))

− ∑
K∈Th

τK(σ(u− ũ)− ν∆(u− ũ) +∇(p− p̃), σv− ν∆v +∇q)0,K

= ν(∇(u− ũ),∇v)︸ ︷︷ ︸
I1

+ σ(u− ũ, v)− ∑
K∈Th

τK(σ(u− ũ), σv)0,K︸ ︷︷ ︸
I2

−(p− p̃,∇ · v)− ∑
K∈Th

τK(∇(p− p̃), σv)0,K︸ ︷︷ ︸
I3

−(q,∇ · (u− ũ))− ∑
K∈Th

τK(σ(u− ũ),∇q)0,K︸ ︷︷ ︸
I4

− ∑
K∈Th

τK(σ(u− ũ),−ν∆v)0,K︸ ︷︷ ︸
I5

− ∑
K∈Th

τK(−ν∆(u− ũ), σv)0,K︸ ︷︷ ︸
I6

− ∑
K∈Th

τK(−ν∆(u− ũ),−ν∆v)0,K︸ ︷︷ ︸
I7

− ∑
K∈Th

τK(−ν∆(u− ũ),∇q)0,K︸ ︷︷ ︸
I8

− ∑
K∈Th

τK(∇(p− p̃),−ν∆v)0,K︸ ︷︷ ︸
I9

− ∑
K∈Th

τK(∇(p− p̃),∇q)0,K︸ ︷︷ ︸
I10

.

Below, we shall estimate the above terms Ii, i = 1, 2, · · · , 10. First, according to the norm (2.12)
and the interpolation estimate (3.2), we have

I1 ≤
√

νC̃‖∇(u− ũ)‖0|v|1,ν ≤ c
√

νhk|u|k+1|v|1,ν.
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According to the norm (2.13) and the interpolation estimate (3.1), we have

I2 = σ ∑
K∈Th

(1− στK)(u− ũ, v)0,K ≤ c
(

∑
K∈Th

σ(1− στK)‖u− ũ‖2
0,K

)1/2
|v|0,h

≤ c
(

∑
K∈Th

σ(1− στK)h
2(k+1)
K |u|2k+1,K

)1/2
|v|0,h ≤ c

√
νhk|u|k+1|v|0,h,

where we have used the estimate

σh2
K(1− στK) ≤ 4ν/m

which can be shown from the function ξ(·) with ξ = 1 if 4ν ≤ mσh2
K and ξ = 4ν

mσh2
K

if 4ν >

mσh2
K. In fact, since

σh2
K(1− στK) = σh2

K
σh2

K(ξ − 1) + 4ν/m
σh2

Kξ + 4ν/m
,

when ξ = 1 if 4ν ≤ mσh2
K, we have

σh2
K

σh2
K(ξ − 1) + 4ν/m
σh2

Kξ + 4ν/m
=

σh2
K4ν/m

σh2
K + 4ν/m

≤
σh2

K4ν/m
σh2

K
=

4ν

m
;

when ξ = 4ν
mσh2

K
if 4ν > mσh2

K, we have

σh2
K

σh2
K(ξ − 1) + 4ν/m
σh2

Kξ + 4ν/m
=

σh2
K(8ν−mσh2

K)/m
8ν/m

≤ σh2
K <

4ν

m
.

According to the norms (2.13) and (2.14) and the interpolation properties (3.7) and (3.5), we
have

I3 = ∑
K∈Th

(1− στK)(∇(p− p̃), v)0,K ≤ c
(

∑
K∈Th

(1− στK)σ
−1‖∇(p− p̃)‖2

0,K

)1/2
|v|0,h

≤ c

√
max
K∈Th

1− στK
στK

|p− p̃|1,h|v|0,h ≤ c max
K∈Th

√
8ν

mσh2
K
|p− Jh p|1,h|v|0,h

= c max
K∈Th

√
8ν

mσh2
K

(
∑

K∈Th

τK‖∇(p− Jh p)‖2
0,K

)1/2
|v|0,h ≤ c

√
ν

h`−1

σ
max
K∈Th

h−1
K |p|`|v|0,h,

where we have used the following estimates

1− στK
στK

≤ 8ν

mσh2
K

and τK ≤
1
σ

,

which can be shown from the function ξ(·).
According to the norm (2.13) and the interpolation property (3.1), we have

I4 = ∑
K∈Th

(1− στK(∇q, u− ũ)0,K ≤
(

∑
K∈Th

(1− στK)
2τ−1

K ‖u− ũ‖2
0,K

)1/2
|q|1,h

≤ c
(

∑
K∈Th

(1− στK)
2τ−1

K h2(k+1)
K |u|2k+1,K

)1/2
|q|1,h ≤ c

√
νhk|u|k+1|q|1,h,
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where we have used the following estimate

(1− στK)
2τ−1

K h2
K ≤

8ν

m

which can be shown from the function ξ(·).
According to the norm (2.12), the local inverse estimate Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K, and the
interpolation property (3.1), we have

I5 = − ∑
K∈Th

τK(σ(u− ũ),−ν∆v)0,K ≤ ∑
K∈Th

σντKC−1/2h−1
K ‖u− ũ‖0,K‖∇v‖0,K

≤ c
(

∑
K∈Th

σ2ντ2
KC−1h−2

K ‖u− ũ‖2
0,K

)1/2
|v|1,ν ≤ c

√
νhk|u|k+1|v|1,ν,

where we have used the estimate στK ≤ 1.
According the norm (2.13) and the interpolation property (3.3), we have

I6 = ∑
K∈Th

τKσν(∆(u− ũ), v)0,K

≤ c
(

∑
K∈Th

τ2
Kν2σh−2

K
1− στK

h2
K‖∆(u− ũ)‖2

0,K

)1/2
|v|0,h ≤ c

√
νhk|u|k+1|v|0,h,

where we have used the following estimate

τ2
Kν2σh−2

K
1− στK

≤ mν

4

which can be shown from the function ξ(·).
According to the norm (2.12), the local inverse estimate Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K, and the
interpolation property (3.1), we have

I7 ≤ ∑
K∈Th

τKν2‖∆(u− ũ)‖0,K‖∆v‖0,K ≤ ∑
K∈Th

τKν2C−1/2h−1
K ‖∆(u− ũ)‖0,K‖∇v‖0,K

≤ c
(

∑
K∈Th

τ2
Kh−4

K ν3h2
K‖∆(u− ũ)‖2

0,K

)1/2
|v|1,ν ≤ c

√
νhk|u|k+1|v|1,ν,

where we have used the estimate

τ2
Kh−4

K ν3 =
ν3

(σh2
Kξ + 4ν/m)2

≤ m2ν

16
.

According to the norm (2.14) and the interpolation property (3.1), we have

I8 ≤
(

∑
K∈Th

τKh−2
K ν2h2

K‖∆(u− ũ)‖2
0,K

)1/2
|q|1,h ≤ c

√
νhk|u|k+1|q|1,h,

where we have used the following estimate

τKh−2
K ν2 =

ν2

σh2
Kξ + 4ν/m

≤ mν

4
.
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According to the local inverse estimate Ch2
K‖∆v‖2

0,K ≤ ‖∇v‖2
0,K, the norms (2.14) and (2.12),

and the interpolation properties (3.7) and (3.5), we have

I9 ≤ ∑
K∈Th

τKν‖∇(p− p̃)‖0,K‖∆v‖0,K ≤ ∑
K∈Th

τKνC−1/2h−1
K ‖∇(p− p̃)‖0,K‖∇v‖0,K

≤ c
(

∑
K∈Th

τ2
Kνh−2

K ‖∇(p− p̃)‖2
0,K

)1/2
|v|1,ν ≤ c

√
ν max

K∈Th

1√
σh2

Kξ + 4ν/m
|p− p̃|1,h|v|1,ν

≤ c
√

ν max
K∈Th

1√
σh2

Kξ + 4ν/m
|p− Jh p|1,h|v|1,ν ≤ c max

K∈Th

√
ν√

σhK
|p− Jh p|1,h|v|1,ν

≤ c
√

ν
h`−1

σ
max
K∈Th

h−1
K |p|`|v|1,ν,

where we have used the estimate τK ≤ σ−1 (see the proof of I3).
Finally, considering the last term I10, from the definition (3.6) of p̃ , we have

I10 = − ∑
K∈Th

τK(∇(p− p̃),∇q)0,K = 0.

Summarizing all the above estimates and the obvious inequality ‖(v, q)‖h ≤ |||(v, q)|||h, we
have

B((w, z), (v, q)) ≤ c
√

ν
(

hk|u|k+1 +
h`−1

σ
max
K∈Th

h−1
K |p|`

)
‖(v, q)‖h

≤ c
√

ν
(

hk|u|k+1 +
h`−1

σ
max
K∈Th

h−1
K |p|`

)
|||(v, q)|||h,

and from (3.9) we obtain

|||(w, z)|||h ≤ c
√

ν
(

hk|u|k+1 +
h`−1

σ
max
K∈Th

h−1
K |p|`

)
. (3.10)

The desired results thus follow. This completes the proof. 2

The two significant features for the standard H1 semi-norm errors of the velocity in Lemma
3.1 are that the viscosity ν, which is usually small, completely disappears and the reaction
constant σ, which is usually large, acts only in the denominator position.

Remark 3.2. If the pressure p is more regular, say p ∈ H`+1(Ω), then all the estimates in Lemma 3.1
can be obtained as follows:

‖∇(uh − ũ)‖0 ≤ c
(

hk|u|k+1 +
h`

σ
max
K∈Th

h−1
K |p|`+1

)
,

|uh − ũ|0,h ≤ c
√

ν
(

hk|u|k+1 +
h`

σ
max
K∈Th

h−1
K |p|`+1

)
,

|ph − p̃|1,h ≤ c
√

ν
(

hk|u|k+1 +
h`

σ
max
K∈Th

h−1
K |p|`+1

)
,

‖ph − p̃‖0 ≤ c
√
(σ + ν)ν

(
hk|u|k+1 +

h`

σ
max
K∈Th

h−1
K |p|`+1

)
.
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The main purpose of Lemma 3.1 is for the establishment of the effects on the convergence
of the finite element solutions from the physical parameters σ and ν, so these error estimates
are not established in terms of the optimum in h with respect to the order of approximations.
However, as reviewed in the introduction section, from the error estimates which is obtained
by [3], the optimum in h indeed holds in the convergence if one does not care the values of σ

and ν. On the other hand, we can obtain more general error estimates from the argument in
proving Lemma 3.1. For that goal, we choose p̃ := Jh p which satisfies (3.4) and (3.5), instead
of the finite element projection given in (3.6), because we need the L2 norm error estimates
for p− p̃. As mentioned in Remark 3.1, such error estimates are not available for (3.6). While
other terms are estimated unchanged as in proving Lemma 3.1, we therefore only re-estimate
the following four terms:

−(p− p̃,∇ · v), − ∑
K∈Th

τK(∇(p− p̃), σv)0,K,

− ∑
K∈Th

τK(∇(p− p̃),−ν∆v)0,K, − ∑
K∈Th

τK(∇(p− p̃),∇q)0,K.

From (3.4) and (3.5), we have the following estimates:

−(p− p̃,∇ · v) ≤ ‖p− p̃‖0‖∇v‖0 ≤ c
h`√

ν
|p|`|v|1,ν

and

− ∑
K∈Th

τK(∇(p− p̃), σv)0,K ≤ c
(

∑
K∈Th

στ2
K

1− στK
‖∇(p− p̃)‖2

0,K

)1/2
|v|0,h

≤ c
h`√

4ν/m
|p|`|v|0,h,

where we have used the interpolation error estimate (3.5) for s = ` and στ2
K/(1 − στK) ≤

1/(4ν/m) which can be shown by the two choices ξ = 1 and ξ = 4ν/(mσh2
K). In the following

two estimates, we have used the interpolation error estimate (3.5) for s = `, the local inverse
Ch2

K‖∆v‖2
0,K ≤ ‖∇v‖2

0,K and the fact that τK ≤ h2
K/(4ν/m):

− ∑
K∈Th

τK(∇(p− p̃),−ν∆v)0,K ≤ ∑
K∈Th

ντKC−1/2h−1
K ‖∇(p− p̃)‖0,K‖∇v‖0,K

≤ c
h`√

4ν/m
|p|`|v|1,ν

and

− ∑
K∈Th

τK(∇(p− p̃),∇q)0,K ≤ c
h`√

4ν/m
|p|`|q|1,h.

Hence, with the same (w, z) as in Lemma 3.1, we have

|||(w, z)|||h ≤ c
(√

νhk|u|k+1 +
h`√

4ν/m
|p|`

)
. (3.11)

Thus, we have proven the following lemma which states the optimum in h relative to the order
of approximations. Also, the dependence on σ and ν are explicitly revealed.
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Lemma 3.2. Under the same assumptions as in Lemma 3.1, only with the replacement p̃ by the nodal
interpolation Jh p which satisfies (3.4) and (3.5), we have

‖∇(uh − ũ)‖0 ≤ c
(

hk|u|k+1 +
h`

4ν/m
|p|`

)
,

|uh − ũ|0,h ≤ c
(√

νhk|u|k+1 +
h`√

4ν/m
|p|`

)
,

|ph − p̃|1,h ≤ c
(√

νhk|u|k+1 +
h`√

4ν/m
|p|`

)
,

‖ph − p̃‖0 ≤ c
√

σ + ν
(√

νhk|u|k+1 +
h`√

4ν/m
|p|`

)
.

If, additionally, p ∈ H`+1(Ω), we have

‖∇(uh − ũ)‖0 ≤ c
(

hk|u|k+1 +
h`+1

4ν/m
|p|`+1

)
,

|uh − ũ|0,h ≤ c
(√

νhk|u|k+1 +
h`+1
√

4ν/m
|p|`+1

)
,

|ph − p̃|1,h ≤ c
(√

νhk|u|k+1 +
h`+1
√

4ν/m
|p|`+1

)
,

‖ph − p̃‖0 ≤ c
√

σ + ν
(√

νhk|u|k+1 +
h`+1
√

4ν/m
|p|`+1

)
.

Now we state the main result of the H1 semi-norm error estimates of the velocity.

Theorem 3.1. Let (uh, ph) ∈ V h × Qh denote the finite element solution pair to problem (2.8). As-
sume that the exact solution pair (u, p) ∈ (Hk+1(Ω) ∩ H1

0(Ω))d × (H`(Ω) ∩ L2
0(Ω)) for k, ` ≥ 1.

Assuming quasi-uniform meshes with hK ≥ ch, we have

‖∇(u− uh)‖0 ≤ c
(

hk|u|k+1 +
h`

max{σh2, 4ν/m} |p|`
)

.

If, additionally, p ∈ Hl+1(Ω), we have

‖∇(u− uh)‖0 ≤ c
(

hk|u|k+1 +
h`+1

max{σh2, 4ν/m} |p|`+1

)
.

Proof. Applying the triangle inequality, we obtain the error estimates from Lemma 3.1, the
interpolation property (3.2) of Ihu, the assumption hK ≥ ch, Lemma 3.2, and Remark 3.2. 2

The assumption of quasi-uniform meshes with hK ≥ ch is due to the presence of maxK∈Th h−1
K

in Lemma 3.1, while such an assumption is not needed in Lemma 3.2. So far, we have obtained
the error bound in H1 semi-norm for the velocity, whatever the values of σ, ν and h are.

From Lemma 3.1 and the assumption of quasi-uniform meshes, we can obtain error es-
timates of the velocity in L2-norm and of the pressure. In fact, we first remark that, due to
quasi-uniform meshes with hK ≥ ch, there hold

c9 ≤ max
K∈Th

τK

/
min
K∈Th

τK ≤ c10 (3.12)
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and
c11 ≤ max

K∈Th
(1− στK)

/
min
K∈Th

(1− στK) ≤ c12. (3.13)

From the estimates in the norm | · |0,h of uh − ũ in Lemma 3.1 and Lemma 3.2 and (3.13), we
obtain

‖uh − ũ‖0 ≤ c

√
h2

4ν/m
+

1
σ

(√
νhk|u|k+1 +

h`

max{σh2/
√

4ν/m,
√

4ν/m}
|p|`

)
,

and by considering the two cases 4ν ≤ mσh2 and 4ν > mσh2, we further obtain

‖uh − ũ‖0 ≤ c
(

max
{

1,

√
4ν

mσh2

}
hk+1|u|k+1 +

h`

σh
|p|`

)
.

By applying the triangle inequality and the interpolation property (3.1), we then conclude the
following results of the L2 norm error estimates of the velocity.

Corollary 3.1. Under the same assumptions as in Theorem 3.1, we have

‖u− uh‖0 ≤ c
(

max
{

1,

√
4ν

mσh2

}
hk+1|u|k+1 +

h`

σh
|p|`

)
,

‖u− uh‖0 ≤ c
(

max
{

1,

√
4ν

mσh2

}
hk+1|u|k+1 +

h`+1

σh
|p|`+1

)
.

We see that the reaction constant σ acts only in the denominator position while the viscos-
ity ν in the numerator position. When compared with Theorem 3.1, we find that ‖u − uh‖0
behaves one order higher than the H1 semi-norm errors. We should point out that we have
not assumed a convex Ω for which the Aubin-Nitsche duality argument can be applied.

Regarding the pressure, from Lemma 3.1, Lemma 3.2, (3.7), (3.5) and (3.12), we can obtain

‖∇(ph − p)‖0 ≤ c

√
4ν

m
+ σh2

(√
νhk−1|u|k+1 +

h`−1

max{σh2/
√

4ν/m,
√

4ν/m}
|p|`

)
,

and considering the two cases 4ν ≤ mσh2 and 4ν > mσh2, we have

‖∇(ph − p)‖0 ≤ c
(

max
{

1,

√
4ν

mσh2

}
h`−1|p|` + max

{√
σh2,

√
4ν

m

}√
νhk−1|u|k+1

)
. (3.14)

In the second term of (3.14), σ lives in the numerator position. In order to establish better error
estimates, with σ acting in the denominator position only, we shall resort to a different way.

We first note that the factor τK in |q|1,h-norm can be dealt with as a whole, due to (3.12). As
a result, for the finite element projection p̃ given by (3.6), we have from (3.7)

‖∇(p− p̃)‖0 ≤ c‖∇(p− Jh p)‖0. (3.15)

In what follows, we shall give the error estimates for the pressure. For that goal, we need
a different interpolation for u, instead of the nodal-interpolation ũ = Ihu. We define the
interpolation ũ ∈ V h as the finite element projection of u in the following:

σ(ũ, v) + ν(∇ũ,∇v)− ∑
K∈Th

τK(σũ− ν∆ũ, σv− ν∆v)0,K

= σ(u, v) + ν(∇u,∇v)− ∑
K∈Th

τK(σu− ν∆u, σv− ν∆v)0,K. (3.16)
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Problem (3.16) allows a unique solution ũ ∈ V h. Following a similar argument for proving
Lemma 3.1, we can obtain the following error estimates:

‖∇(u− ũ)‖0 ≤ chk|u|k+1, (3.17)

|u− ũ|0,h ≤ c
√

νhk|u|k+1. (3.18)

Under the assumption of quasi-uniform meshes, we have(
∑

K∈Th

‖∆(u− ũ)‖2
0,K

)1/2
≤ chk−1|u|k+1.

Using this ũ and following the argument in proving Lemma 3.1, with (w, z) = (uh− ũ, ph− p̃),
we have

B((w, z), (v, q)) = B((u− ũ, p− p̃), (v, q))

= −(p− p̃,∇ · v)− (q,∇ · (u− ũ))

− ∑
K∈Th

τK(σ(u− ũ)− ν∆(u− ũ),∇q)0,K − ∑
K∈Th

τK(∇(p− p̃), σv− ν∆v)0,K

= ∑
K∈Th

(1− στK)(v,∇(p− p̃))0,K + ∑
K∈Th

(1− στK)(u− ũ,∇q)0,K

+ ∑
K∈Th

ντK(∆(u− ũ),∇q)0,K + ∑
K∈Th

ντK(∆v,∇(p− p̃))0,K

≤ c|||(v, q)|||h

(√
max
K∈Th

σ−1(1− στK)‖∇(p− p̃)‖0 +
√

max
K∈Th

σ−1τ−1
K (1− στK)|u− ũ|0,h

+ν
√

max
K∈Th

τK

(
∑

K∈Th

‖∆(u− ũ)‖2
0,K

)1/2
+
√

max
K∈Th

νh−2
K τ2

K‖∇(p− p̃)‖0

)
. (3.19)

From the definition of |||(·, ·)|||h, under the assumption of quasi-uniform meshes (i.e., hK ≥ ch),
we obtain from the stability (3.9)

c
√

min
K∈Th

τK‖∇(ph − p̃)‖0

≤
√

max
K∈Th

σ−1(1− στK)‖∇(p− p̃)‖0 +
√

max
K∈Th

σ−1τ−1
K (1− στK)|u− ũ|0,h

+ν
√

max
K∈Th

τK

(
∑

K∈Th

‖∆(u− ũ)‖2
0,K

)1/2
+
√

max
K∈Th

νh−2
K τ2

K‖∇(p− p̃)‖0,

and, from the interpolation error estimates: (3.15), (3.5), (3.3), (3.17) and (3.18), we further
obtain

c‖∇(ph − p̃)‖0 ≤ max
K∈Th

√
σh2

K(ξ − 1) + 4ν/m
σh2

K
‖∇(p− Jh p)‖0

+max
K∈Th

√
σh2

K(ξ − 1) + 4ν/m
σh2

K

√
σh2

Kξ + 4ν/m
h2

K
|u− ũ|0,h

+ν
(

∑
K∈Th

‖∆(u− ũ)‖2
0,K

)1/2
+ max

K∈Th

√
ν

σh2
Kξ + 4ν/m

‖∇(p− Jh p)‖0

≤
√

4ν

mσh2 h`−1|p|` + max
{
(1,

√
4ν

mσh2

}
νhk−1|u|k+1 + νhk−1|u|k+1 + h`−1|p|`, (3.20)



ERROR ANALYSIS OF A STABILIZED FEM FOR THE GENERALIZED STOKES PROBLEM 23

that is

‖∇(ph − p̃)‖0 ≤ c max
{

1,

√
4ν

mσh2

}(
h`−1|p|` + νhk−1|u|k+1

)
.

Thus, we can conclude the following corollary.

Corollary 3.2. Under the same assumptions as in Lemma 3.1 and the quasi-uniform assumption of
hK ≥ ch, we have

‖∇(ph − p)‖0 ≤ c max
{

1,

√
4ν

mσh2

}(
h`−1|p|` + νhk−1|u|k+1

)
.

If p ∈ H`+1(Ω), we can similarly obtain

‖∇(ph − p)‖0 ≤ c max
{

1,

√
4ν

mσh2

}(
h`|p|`+1 + νhk−1|u|k+1

)
.

Again, for pressure, the viscosity constant acts only in the numerator position while the reac-
tion constant σ in the denominator position.

Now, taking ũ = Ihu satisfying (3.1), (3.2) and (3.3) and p̃ = Jh p satisfying (3.4) and (3.5).
From Lemma 3.2, we obtain

‖∇(ph − p)‖0 ≤ c max
{

1,

√
mσh2

4ν

}(
h`−1|p|` + νhk−1|u|k+1

)
, (3.21)

‖∇(ph − p)‖0 ≤ c max
{

1,

√
mσh2

4ν

}(
h`|p|`+1 + νhk−1|u|k+1

)
. (3.22)

Hence, combining Corollary 3.2 and (3.21) and (3.22), we conclude the following main result
of the H1 semi-norm error estimates of the pressure.

Theorem 3.2. Under the same assumptions as in Corollary 3.2, there hold

‖∇(ph − p)‖0 ≤ c
(

h`−1|p|` + νhk−1|u|k+1

)
,

‖∇(ph − p)‖0 ≤ c
(

h`|p|`+1 + νhk−1|u|k+1

)
.

The significant feature of the H1 semi-norm error estimates in Theorem 3.2 for the pressure is
that they are independent of σ. Although the regularity of the exact solution pair (u, p) usually
depend on σ and ν, Theorem 3.2 indicates that the numerical behavior of the H1 semi-norm of
ph will not be affected from σ and ν (if ν ≤ c). This feature has been numerically confirmed
in [3].

Remark 3.3. All the error estimates which have obtained so far are essentially uniform, up to the
regularity-norms of the exact solution pair (u, p), since the viscosity constant ν and the reaction con-
stant σ act in the numerator position and the denominator position, respectively.

4. L2 Error Estimates of the Velocity in Convex Ω

As we have seen, the L2 norm error estimates of the velocity can behave with one order higher
than the H1 semi-norm error estimates, regardless of the values of σ, ν and h and without the
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application of the classical Aubin-Nitsche duality argument. On the other hand, the L2 norm
errors of the velocity obtained in the previous section are not applicable for the case of σ = 0.
So, the purpose of this section is twofold: when Ω is convex for which the Aubin-Nitsche
duality argument can apply, the L2 norm error estimates of the velocity are established with
one order higher than the H1 semi-norm error estimates in Theorem 3.1 and are valid in the
case σ = 0. We remark that if σ = 0 then the element-wise stabilization parameter τK defined
in (2.4) should be simplified to τK = h2

K/(8ν/mk).
As usual, we consider the auxiliary problem: Find (u∗, p∗) ∈ (H1

0(Ω))d × L2
0(Ω) such that

−ν∆u∗ +∇p∗ + σu∗ = u− uh in Ω,
∇ · u∗ = 0 in Ω,

u∗ = 0 on Γ,
(4.1)

where u is the velocity of the solution pair (u, p) to problem (1.1) and uh ∈ V h is the velocity
of the finite element solution pair (uh, ph) of problem (2.8). We shall require that there holds
the following regularity:

ν‖u∗‖2 + ‖p∗‖1 ≤ c‖u− uh‖0. (4.2)

When Ω is a two dimensional convex polygon, the above can be shown relatively easily by
means of the stream function approach. In three dimensions, (4.2) would also hold.

Put eu = u − uh and ep = p − ph, where p is the pressure of the solution pair (u, p) of
problem (1.1) and ph ∈ Qh the pressure of the finite element solution pair (uh, ph) of problem
(2.8). Let (u∗h, p∗h) = (Ihu, Jh p) ∈ V h × Qh which are the nodal interpolations satisfying (3.1)-
(3.5). We have

‖eu‖2
0 = ν(∇(u∗ − u∗h),∇eu) + σ(u∗ − u∗h, eu) + (∇(p∗ − p∗h), eu)− (ep,∇ · (u∗ − u∗h))

+ν(∇u∗h,∇eu) + σ(u∗h, eu) + (∇p∗h, eu)− (ep,∇ · u∗h).

From the orthogonality property (3.8), we have

ν(∇u∗h,∇eu) + σ(u∗h, eu) + (∇p∗h, eu)− (ep,∇ · u∗h)

= ∑
K∈Th

τK

(
σeu − ν∆eu +∇ep, σu∗h − ν∆u∗h +∇p∗h

)
0,K

= − ∑
K∈Th

τK

(
σeu − ν∆eu +∇ep, σ(u∗ − u∗h)− ν∆(u∗ − u∗h) +∇(p∗ − p∗h)

)
0,K

+ ∑
K∈Th

τK

(
σeu − ν∆eu +∇ep, σu∗ − ν∆u∗ +∇p∗

)
0,K

,

but, from the first equation of (4.1), we have σu∗ − ν∆u∗ +∇p∗ = eu, and we have

‖eu‖2
0 = ν(∇(u∗ − u∗h),∇eu) + σ(u∗ − u∗h, eu) + (∇(p∗ − p∗h), eu)− (ep,∇ · (u∗ − u∗h))

− ∑
K∈Th

τK

(
σeu − ν∆eu +∇ep, σ(u∗ − u∗h)− ν∆(u∗ − u∗h) +∇(p∗ − p∗h)

)
0,K

+ ∑
K∈Th

τK

(
σeu − ν∆eu +∇ep, eu

)
0,K

.

We first estimate the last term in the above. We expand it as

∑
K∈Th

τK(σeu− ν∆eu +∇ep, eu)0,K = ∑
K∈Th

στK‖eu‖2
0,K− ∑

K∈Th

ντK(∆eu, eu)0,K + ∑
K∈Th

τK(∇ep, eu)0,K.
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The three terms in the above are estimated as follows. From the finite element interpolation
properties (3.1), (3.2), (3.5), (3.3) and Lemma 3.2, since σ(1− στK) ≤ ch−1

K
√

ν which can be
shown by the two choices ξ = 1 for 4ν ≤ mσh2

K and ξ = 4ν/(mσh2
K) for 4ν > mσh2

K, we have

|u− Ihu|0,h ≤ c
√

νhk|u|k+1,

and we have

|eu|0,h ≤ |u− Ihu|0,h + |Ihu− uh|0,h ≤ c
(√

νhk|u|k+1 +
h`√

4ν/m
|p|`

)
,

and, since στ2
K/(1− στK) ≤ chK/

√
4ν/m, we have

∑
K∈Th

στK‖eu‖2
0,K ≤

(
∑

K∈Th

σ2τ2
K‖eu‖2

0,K

)1/2
‖eu‖0 ≤

√
max
K∈Th

στ2
K

1− στK
|eu|0,h‖eu‖0

≤ c
(

hk+1|u|k+1 +
h`+1

4ν/m
|p|`

)
‖eu‖0.

Since ντK ≤ ch2
K, we have no difficulties in obtaining the estimates of the other terms,

− ∑
K∈Th

ντK(∆eu, eu)0,K ≤
(

∑
K∈Th

ν2τ2
K‖∆(u− Ihu)‖2

0,K

)1/2
‖eu‖0

+
(

∑
K∈Th

ν2τ2
Kh−2

K ‖∇(Ihu− uh)‖2
0,K

)1/2
‖eu‖0

≤ c
(

hk+1|u|k+1 +
h`+1

4ν/m
|p|`

)
||eu||0,

and

∑
K∈Th

τK(∇ep, eu)0,K ≤
(

∑
K∈Th

τ2
K‖∇ep‖2

0,K

)1/2
‖eu‖0 ≤ c

(
hk+1|u|k+1 +

h`+1

4ν/m
|p|`

)
‖eu‖0.

Hence,

‖eu‖2
0 ≤ |E|+ c

(
hk+1|u|k+1 +

h`+1

4ν/m
|p|`

)
‖eu‖0,

where E is defined as

E := ν(∇(u∗ − u∗h),∇eu) + σ(u∗ − u∗h, eu) + (∇(p∗ − p∗h), eu)− (ep,∇ · (u∗ − u∗h))

− ∑
K∈Th

τK

(
σeu − ν∆eu +∇ep, σ(u∗ − u∗h)− ν∆(u∗ − u∗h) +∇(p∗ − p∗h)

)
0,K

.

Following the argument for proving Lemma 3.2, we can obtain

|E| ≤ ch√
ν
‖(eu, ep)‖h

(
ν|u∗|2 + |p∗|1

)
+

ch√
ν

{(
∑

K∈Th

h2
Kν‖∆(u− Ihu)‖2

0,K

)1/2
+ |Ihu− uh|1,ν

}(
ν|u∗|2 + |p∗|1

)
,

where the norm ‖(·, ·)‖h is given in (2.15) and the term |Ihu − uh|1,ν satisfies (3.11). By the
triangle inequality, we have

‖(eu, ep)‖h ≤ ‖(u, p)− (Ihu, Jh p)‖h + ‖(Ihu, Jh p)− (uh, ph)‖h,
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where the second term in the right-hand side satisfies (3.11). From the finite element interpo-
lation properties (3.1), (3.2), (3.3), (3.4) and (3.5) of (Ihu, Jh p) ∈ V h ×Qh, we obtain

‖(u, p)− (Ihu, Jh p)‖h +
(

∑
K∈Th

h2
Kν‖∆(u− Ihu)‖2

0,K

)1/2
≤ c
(√

νhk|u|k+1 +
h`√

ν
|p|`

)
. (4.3)

So, from (4.3), (3.11) and the regularity result (4.2), we have

‖eu‖2
0 ≤ c

(
hk+1|u|k+1 +

h`+1

4ν/m
|p|`

)
‖eu‖0,

that is,

‖eu‖0 ≤ c
(

hk+1|u|k+1 +
h`+1

4ν/m
|p|`

)
.

We thus conclude the following result:

Lemma 4.1. Under the same assumptions as in Lemma 3.2, assuming a convex Ω, we have

‖u− uh‖0 ≤ c
(

hk+1|u|k+1 +
h`+1

4ν/m
|p|`

)
.

It is interesting that the above result, which is obtained mainly from Lemma 3.2, is independent
of σ. To the authors’ knowledge, such an estimate is new. In addition, we do not assume the
quasi-uniform meshes.

Combining Corollary 3.1 and Lemma 4.1, we obtain the main result of the L2 norm error
bounds of the velocity when Ω is convex.

Theorem 4.1. Under the same assumptions as in Corollary 3.1 and Lemma 4.1, we have

‖u− uh‖0 ≤ c
(

hk+1|u|k+1 +
h`+1

max{σh2, 4ν/m} |p|`
)

.

As expected, such error estimates hold regardless of the values of σ and ν (Note that σ = 0
and ν = 0 cannot hold simultaneously) and are one order higher than those in Theorem 3.1.
Also, up to the regularity-norms of the exact solution pair (u, p), the L2 norm error estimates
no longer depend on ν, like the H1 semi-norm error estimates, since max{σh2, 4ν/m} ≥ σh2.
Consequently, in a convex Ω, the convergence behaviors of both are the same with respect to
σ and ν. Of course, relative to h, the former is one order higher the latter. In addition, for more
regular pressure p ∈ H`+1(Ω), we have

‖u− uh‖0 ≤ c
(

hk+1|u|k+1 +
h`+2

max{σh2, 4ν/m} |p|`+1

)
.

5. Discussions: Error Bounds for Numerical σ and ν

We have seen that the error estimates obtained are essentially uniform with respect to σ and ν.
In this section, we shall consider the practical values among σ, ν and h and derive improved
error estimates. We have not assumed the convexity of Ω in this section.
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In practical computations, the mesh size h and σh2 are relatively larger than ν. Note that
σ and ν are inversely proportional to the time-step δt in the time discretization of the time-
dependent Stokes problem and the Reynolds number Re, respectively. Two most interesting
cases we shall consider, pertaining to the relationship among σ, h, ν and c, are as follows:

σh2 ≥ c ≥ ν, (5.1)

σh ≥ c ≥ ν/h. (5.2)

Since σ and ν may not be changed for a specific problem while the mesh size h tends to zero,
the values of σ and ν in (5.1) and (5.2) are only numerically meaningful, i.e., (5.1) and (5.2) hold
only when h is not very small (as is exactly the realistic situation, however). With a glance at
(5.1) and (5.2), they look alike. Indeed, from both (5.1) and (5.2) we have σh2 ≥ ν. But, ν ≤ c in
(5.1) while ν ≤ ch is imposed in (5.2). The other difference is that when σ−1 = cδt (time step),
(5.2) means δt ≤ ch while (5.1) means δt ≤ ch2. Both (5.1) and (5.2) are generally fulfilled in
the practical computations, anyway. In fact, for the time discretizations we choose either of
the following two:

δt ≤ ch2, δt ≤ ch.

Such choices of the time step δt are quite common in time difference methods, e.g., see [36].
As for ν ≤ c or ν ≤ ch, they are also practically true.

Now, we shall give the error estimates under (5.1) or (5.2). Under (5.1), from Theorem 3.1
we have

‖∇(u− uh)‖0 ≤ c
(
hk|u|k+1 + h`|p|`

)
, ‖∇(u− uh)‖0 ≤ c

(
hk|u|k+1 + h`+1|p|`+1

)
, (5.3)

while, under (5.2), we have

‖∇(u− uh)‖0 ≤ c
(
hk|u|k+1 + h`−1|p|`

)
, ‖∇(u− uh)‖0 ≤ c

(
hk|u|k+1 + h`|p|`+1

)
, (5.4)

In the above, we only need σh2 ≥ c or σh ≥ c while ν ≤ c and ν ≤ ch are unnecessary, since
the H1 semi-norm errors of velocity do not depend on ν.

Under (5.1), from Corollary 3.1, we have

‖u− uh‖0 ≤ c
(
hk+1|u|k+1 + h`+1|p|`

)
. (5.5)

Note that this is optimal with respect to the order of approximations and the regularity of the
solution pair. Also, we do not require Ω to be convex or smooth, as is usually required in finite
element analysis. If p ∈ H`+1(Ω), we have

‖u− uh‖0 ≤ c
(
hk+1|u|k+1 + h`+2|p|`+1

)
. (5.6)

Under (5.2), we have

‖u− uh‖0 ≤ c
(
hk+1|u|k+1 + h`|p|`

)
, ‖u− uh‖0 ≤ c

(
hk+1|u|k+1 + h`+1|p|`+1

)
. (5.7)

Note that the error estimates for the pressure in H1 semi-norm are independent of σ. Under
the condition ν ≤ c in (5.1), from Theorem 3.2 we have, for pressure in H1 semi-norm,

‖∇(ph − p)‖0 ≤ c
(
h`−1|p|` + hk−1|u|k+1

)
, ‖∇(ph − p)‖0 ≤ c

(
h`|p|`+1 + hk−1|u|k+1

)
. (5.8)
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Though not optimal relative to the order of approximations, such error estimates are classical
in the standard Galerkin method. Under the condition ν ≤ ch in (5.2), we have

‖∇(ph − p)‖0 ≤ c
(
h`−1|p|` + hk|u|k+1

)
, (5.9)

‖∇(ph − p)‖0 ≤ c
(
h`|p|`+1 + hk|u|k+1

)
. (5.10)

The error estimate (5.10) is unexpected at all. This means that, for smooth enough u and p,
better approximations of the pressure will be produced under (5.2), with optimum in h with
respect to the order of approximations. In the standard Galerkin method, in terms of the order
of approximations, it is in general not possible to have optimal error estimates like (5.10) for
the pressure.

6. Numerical Experiments

For testing the performance of the Barrenechea-Valentin stabilized FEM, remarkable numer-
ical results have been reported in [3]. In this section, we are going to perform some further
numerical experiments.
Example 6.1 (A smooth solution problem). In this example, we study an example taken from
[4], defined on Ω = (0, 1) × (0, 1), and examine the detailed convergence behavior of the
stabilization method using P1-P1 finite elements. Assume that the smooth exact solution pair
(u, p) of the generalized Stokes problem (1.1) is given by

u1(x, y) = 2πx2(1− x)2 cos(πy) sin(πy),
u2(x, y) = 2(1− x)(2x2 − x) sin2(πy),
p(x, y) = sin(x) cos(y) + (cos(1)− 1) sin(1).

(6.1)

Substituting the solution (6.1) into problem (1.1), we can obtain the source-like function f .
Notice that u = 0 on ∂Ω and

∫
Ω p = 0. We first consider the uniform triangular meshes of

Ω. A uniform triangular mesh is formed by dividing each square, with side-length h∗ in a
uniform square mesh, into two triangles by drawing a diagonal line from the left-down corner
to the right-up corner. Therefore, we have hK = h =

√
2h∗ for all K ∈ Th.

Numerical results produced by the stabilized FEM (2.8) for viscosity ν = 10−i, i = 2, 3, 4,
and reaction coefficient σ = 10j, j = 0, 1, · · · , 5, are reported in Table 1 and Table 2, where the
orders of convergence are estimated. The results of the classical Stokes problem, i.e., σ = 0,
are also presented therein. We remark again that if σ = 0 then the element-wise stabilization
parameter τK defined in (2.4) should be simplified to τK = h2

K/(8ν/mk). From the numerical
results, we have the following observations:

• For all considered values of the viscosity ν and the reaction coefficient σ, the stabilized
FEM (2.8) displays optimal orders of convergence in the L2 norm and H1 norm for ve-
locity field and in the H1 norm for pressure. In the present paper, we do not give a new
error estimate of pressure in the L2 norm. However, from the error estimate (1.10) de-
rived in [3], we can find that the convergence order of pressure in the L2 norm is not
optimal. This is also verified by the numerical results shown in Table 1.

• When 0 < ν � 1 and σ � 1, for a fixed mesh size h, the relative errors of velocity field
uh and pressure ph in both the L2 norm and H1 norm appear to be uniform with respect
to ν and σ. These results are consistent with the theoretical analysis given in this paper.
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Figure 1: Contours of exact pressure and P1 approximations on a uniform triangu-
lar mesh with h∗ = 1/20, where ν = 10−3 and σ = 103, 104, 105

• The stabilized FEM (2.8) presents a robust behavior in the sense that no pressure insta-
bilities appear, even if we use a rather coarse mesh with, e.g., h∗ = 1/20; see Figure 1 for
the contours of exact pressure and its approximations.

For further testing the effectiveness of the Barrenechea-Valentin stabilized FEM (2.8), we
now consider the P1-P1 finite elements on an unstructured triangular mesh that is depicted in
Figure 2. This mesh is constructed by dividing each side of the square Ω into equal segments
with length h∗ = 1/20 and then using the FreeFem++ (see [29]) to generate an unstructured
quasi-uniform mesh. The elevation plots of the exact and approximate solutions for ν = 10−3

and σ = 105 are shown in Figure 3. Again, one can find that the Barrenechea-Valentin stabi-
lized FEM (2.8) generates stable and accurate results for 0 < ν � 1 and σ � 1, even if we use
a rather coarse mesh with h∗ = 1/20.
Example 6.2 (A time-dependent lid-driven cavity flow). We consider a lid-driven cavity flow prob-
lem governed by the following time-dependent, incompressible Stokes equations (cf. [2]):

∂u
∂t
− ν∆u +∇p = 0 in I ×Ω,

∇ · u = 0 in I ×Ω,
u = 0 on I × (∂Ω \ ([0, 1]× {1})),
u = (1, 0)> on I × ([0, 1]× {1}),
u = 0 on {0} ×Ω,

(6.2)

where the time interval and the spatial domain are given by I = (0, T) with T > 0 and Ω =

(0, 1)× (0, 1), respectively. The boundary conditions for t ∈ [0, T] are depicted in Figure 4.
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Figure 2: An unstructured triangular mesh with h∗ = 1/20

Let the time interval [0, T] be uniformly partitioned into l subintervals by {0 = t0 < t1 <

· · · < tl−1 < tl = T} with a constant time step δt = tn − tn−1 for n = 1, 2, · · · , l. Then we
set σ = 1/δt. For any n ≥ 1, we denote the approximate solutions at time level n by un

h and
pn

h . The time discretization is performed by using the first-order backward Euler scheme and
the spatial discretization is carried out by employing the stabilized FEM (2.8) with P1-P1 finite
elements on a uniform triangular mesh as that described in Example 6.1. Then we have the
following fully discrete problem at time level n: find (un

h , pn
h) such that

σ(un
h , vh) + ν(∇un

h ,∇vh)− (pn
h ,∇ · vh)− (qh,∇ · un

h)

− ∑
K∈Th

τK(σun
h − ν∆un

h +∇pn
h , σvh − ν∆vh +∇qh)0,K

= (σun−1
h , vh)− ∑

K∈Th

τK(σun−1
h , σvh − ν∆vh +∇qh)0,K, (6.3)

for all (vh, qh) ∈ Vh ×Qh, where un
h is required to satisfy the prescribed boundary conditions.

We consider the case ν = 10−3, δt = 10−3 (σ = 103) and h∗ = 1/40 and perform the
simulation of the stabilized FEM (6.3) to reach a steady-state solution. The stopping criterion
for the time advancing is given by

‖un
h − un−1

h ‖0 < 10−5‖un
h‖0.

The contours of stream function and pressure at the steady state time T = 0.985 are shown in
Figure 5. From the numerical results shown in Figure 5, we can find that the stabilized FEM
(6.3) produces a reasonable result with a high stability.

Next, we consider a time-independent lid-driven cavity flow problem. We solve the gener-
alized Stokes equations (1.1), with the boundary conditions described in Figure 4, using P1-P1
finite elements on a uniform triangular mesh of mesh size h∗ = 1/20. We depict a vertical
cross section of the velocity component u1 for ν = 10−3 and σ = 103 in Figure 6. In this test,
we can observe the presence of a strong boundary layer on the velocity that is well recovered
by the stabilized FEM (2.8), even we use a rather coarse mesh.
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7. Conclusion

In this paper, we have derived sharper stability and error estimates of the Barrenechea-Valentin
stabilized FEM using the C0 elements for both velocity and pressure. We have explicitly estab-
lished the dependence of stability and error bounds on the viscosity ν, the reaction constant
σ, and the mesh parameter h. It is revealed that the viscosity constant ν and the reaction con-
stant σ respectively act in the numerator position and the denominator position in the error
estimates of velocity and pressure in standard norms without any weights. Error estimates
for a convex domain of the velocity are also obtained. For numerically interesting situations,
we have derived improved error estimates, which are uniform with respect to σ and ν (up
to the regularity-norms of the exact solution pair). All these error estimates support that the
Barrenechea-Valentin method is indeed suitable for the generalized Stokes problem with a
small viscosity ν and a large reaction coefficient σ, in the sense of (5.1) or (5.2). These error
estimates obtained agree very well with the numerical experiments. Such sharper a priori sta-
bility and error estimates have not been achieved elsewhere and before. It will be interesting
if similar results can hold for the general time-dependent incompressible Navier-Stokes equa-
tions. This work is ongoing and will be reported elsewhere in the near future.
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[11] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes prob-

lem, in: W. Hackbush, editor, Efficient Solution of Elliptic Systems, Notes on Numerical Fluid Mechanics,
Vol. 10, pp. 11-19, Braunschweig, Wiesbaden, Viewig, 1984.

[12] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convec-
tion dominated flows with a particular emphasis on the incompressible Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259.

[13] P. G. Ciarlet, Basic error estimates for elliptic problems, in: P. G. Ciarlet and J.-L. Lions eds, Handbook
of Numerical Analysis, Vol. II, Finite Element Methods (part 1), North-Holland, Amsterdam, 1991.

[14] A. L. G. A. Coutinho, L. P. Franca, and F. Valentin, Simulating transient phenomena via residual
free bubbles, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2127-2130.

[15] J. Douglas, Jr. and J. Wang, An absolutely stabilized finite element method for the Stokes problem,
Math. Comput., 52 (1989), 495-508.

[16] H.-Y. Duan, P.-W. Hsieh, R. C. E. Tan, and S.-Y. Yang, Analysis of a new stabilized finite element
method for the reaction-convection-diffusion equations with a large reaction coefficient, Comput.
Methods Appl. Mech. Engrg., 247-248 (2012), 15-36.

[17] H.-Y. Duan, P.-W. Hsieh, R. C. E. Tan, and S.-Y. Yang, Analysis of the small viscosity and large
reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized
finite element method, Comput. Methods Appl. Mech. Engrg., 271 (2014), 23-47.

[18] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applica-
tions in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.

[19] H. Fernando, C. Harder, D. Paredes, and F. Valentin, Numerical multiscale methods for a reaction
dominated model, Comput. Methods Appl. Mech. Engrg., 201-204 (2012), 228-244.

[20] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods,
Comput. Methods Appl. Mech. Engrg., 123 (1995), 299-308.

[21] L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods: I. application to the
advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95 (1992), 253-276.

[22] L. P. Franca and S. L. Frey, Stabilized finite element methods: II. the incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg., 99 (1992), 209-233.

[23] L. P. Franca and F. Valentin, On an improved unusual stabilized finite element method for the
advective-reactive-diffusive equation, Comput. Methods Appl. Mech. Engrg., 190 (2000), 1785-1800.

[24] L. P. Franca, V. John, G. Matthies, and L. Tobiska, An inf-sup stable and residual-free bubble element
for the Oseen equations, SIAM J. Numer. Anal., 45 (2007), 2392-2407.

[25] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,
Springer-Verlag, New York, 1986.

[26] J.-L. Guermond, A. Marra, and L. Quartapelle, Subgrid stabilized projection method for 2D un-
steady flows at high Reynolds numbers, Comput. Methods Appl. Mech. Engrg., 195 (2006), 5857-5876.

[27] E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method
for incompressible flows with high Reynolds number, J. Comput. Phys., 229 (2010), 8643-8665.

[28] I. Harari and T. J. R. Hughes, What are C and h?: inequalities for the analysis and design of finite
element methods, Comput. Methods Appl. Mech. Engrg., 97 (1992), 157-192.

[29] F. Hecht, O. Pironneau, J. Morice, A. Le Hyaric, and K. Ohtsuka, FreeFem++, Third Edition, Version
3.19, 2012, http://www.freefem.org/ff++/.

[30] P.-W. Hsieh and S.-Y. Yang, A new stabilized linear finite element method for solving reaction-
convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 307 (2016), 362-382.

[31] M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes, Improving stability of
stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods
Appl. Mech. Engrg., 199 (2010), 828-840.

[32] T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynam-
ics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formula-



ERROR ANALYSIS OF A STABILIZED FEM FOR THE GENERALIZED STOKES PROBLEM 33

tions that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65 (1987),
85-96.

[33] T. J. R. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational
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Table 1: L2 relative errors of uh and ph for various values of the viscosity ν

and the reaction coefficient σ

ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
L2 relative errors of uh

0 1.8076e-2 4.5534e-3 2.0266e-3 1.1405e-3 7.3010e-4 2.00
1 1.5617e-2 3.8766e-3 1.7206e-3 9.6738e-4 6.1898e-4 2.00

101 1.6782e-2 3.6577e-3 1.5888e-3 8.8668e-4 5.6542e-4 2.07
10−2 102 2.4697e-2 6.2792e-3 1.9085e-3 9.6719e-4 5.9276e-4 2.37

103 2.4726e-2 6.2875e-3 2.8091e-3 1.5841e-3 1.0153e-3 1.99
104 2.4728e-2 6.2879e-3 2.8092e-3 1.5842e-3 1.0154e-3 1.99
105 2.4728e-2 6.2879e-3 2.8092e-3 1.5842e-3 1.0154e-3 1.99
0 1.8228e-2 4.5559e-3 2.0268e-3 1.1405-3 7.3010e-4 2.00
1 1.7009e-2 3.6668e-3 1.5903e-3 8.8710e-4 5.6558e-4 2.08

101 2.4744e-2 6.2886e-3 1.9104e-3 9.6776e-4 5.9299e-4 2.37
10−3 102 2.4730e-2 6.2890e-3 2.8097e-3 1.5844e-3 1.0155e-3 1.99

103 2.4729e-2 6.2880e-3 2.8093e-3 1.5842e-3 1.0154e-3 1.99
104 2.4728e-2 6.2879e-3 2.8092e-3 1.5842e-3 1.0154e-3 1.99
105 2.4728e-2 6.2879e-3 2.8092e-3 1.5842e-3 1.0154e-3 1.99
0 3.0146e-2 4.8533e-3 2.0559e-3 1.1459e-3 7.3153e-4 2.20
1 2.6155e-2 6.5167e-3 1.9526e-3 9.7869e-4 5.9680e-4 2.40

101 2.4787e-2 6.3072e-3 2.8177e-3 1.5885e-3 1.0178e-3 1.99
10−4 102 2.4733e-2 6.2895e-3 2.8100e-3 1.5846e-3 1.0157e-3 1.99

103 2.4729e-2 6.2881e-3 2.8093e-3 1.5842e-3 1.0154e-3 1.99
104 2.4728e-2 6.2879e-3 2.8092e-3 1.5842e-3 1.0154e-3 1.99
105 2.4728e-2 6.2879e-3 2.8092e-3 1.5842e-3 1.0154e-3 1.99

L2 relative errors of ph
0 5.7335e-4 1.4158e-4 6.2748e-5 3.5257e-5 2.2552e-5 2.01
1 5.5464e-4 1.3636e-4 6.0435e-5 3.3960e-5 2.1724e-5 2.01

101 8.3572e-4 1.6858e-4 7.4446e-5 4.1904e-5 2.6841e-5 2.08
10−2 102 2.6269e-3 8.3644e-4 2.1699e-4 1.0815e-4 6.7290e-5 2.38

103 2.9713e-3 1.2086e-3 7.1037e-4 4.7589e-4 3.4133e-4 1.37
104 3.0129e-3 1.2767e-3 7.9725e-4 5.7427e-4 4.4512e-4 1.17
105 3.0163e-3 1.2841e-3 8.0761e-4 5.8745e-4 4.6095e-4 1.14
0 5.2546e-4 1.2968e-4 5.7494e-5 3.2312e-5 2.0671e-5 2.01
1 6.0917e-4 1.3151e-4 5.7770e-5 3.2416e-5 2.0729e-5 2.06

101 1.1619e-3 2.4183e-4 7.1359e-5 3.5789e-5 2.2120e-5 2.46
10−3 102 1.3193e-3 3.5527e-4 1.6383e-4 9.3299e-5 5.9560e-5 1.94

103 1.3386e-3 3.7751e-4 1.8648e-4 1.1518e-4 8.0063e-5 1.72
104 1.3404e-3 3.7994e-4 1.8922e-4 1.1819e-4 8.3297e-5 1.69
105 1.3382e-3 3.8016e-4 1.8950e-4 1.1850e-4 8.3639e-5 1.68
0 5.2451e-4 1.2951e-4 5.7429e-5 3.2278e-5 2.0650e-5 2.01
1 1.0439e-3 1.9839e-4 6.5129e-5 3.3730e-5 2.1043e-5 2.39

101 1.1824e-3 2.8569e-4 1.1907e-4 6.1812e-5 3.6321e-5 2.22
10−4 102 1.1996e-3 3.0346e-4 1.3547e-4 7.6221e-5 4.8617e-5 2.00

103 1.2014e-3 3.0541e-4 1.3749e-4 7.8251e-5 5.0642e-5 1.96
104 1.2013e-3 3.0561e-4 1.3769e-4 7.8462e-5 5.0857e-5 1.96
105 1.1986e-3 3.0558e-4 1.3771e-4 7.8482e-5 5.0879e-5 1.96
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Table 2: H1 relative errors of uh and ph for various values of the viscosity ν

and the reaction coefficient σ

ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
H1 relative errors of uh

0 1.3194e-1 6.6200e-2 4.4162e-2 3.3129e-2 2.6506e-2 1.00
1 1.3200e-1 6.6210e-2 4.4165e-2 3.3130e-2 2.6507e-2 1.00

101 1.3222e-1 6.6243e-2 4.4176e-2 3.3135e-2 2.6509e-2 1.00
10−2 102 1.3297e-1 6.6421e-2 4.4192e-2 3.3141e-2 2.6512e-2 1.00

103 1.3300e-1 6.6442e-2 4.4264e-2 3.3184e-2 2.6540e-2 1.00
104 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6542e-2 1.00
105 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00
0 1.3213e-1 6.6206e-2 4.4163e-2 3.3129e-2 2.6506e-2 1.00
1 1.3238e-1 6.6249e-2 4.4176e-2 3.3135e-2 2.6509e-2 1.00

101 1.3301e-1 6.6428e-2 4.4192e-2 3.3141e-2 2.6512e-2 1.00
10−3 102 1.3300e-1 6.6443e-2 4.4265e-2 3.3184e-2 2.6540e-2 1.00

103 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00
104 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00
105 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00
0 1.4855e-1 6.6719e-2 4.4229e-2 3.3145e-2 2.6511e-2 1.04
1 1.3451e-1 6.6728e-2 4.4245e-2 3.3155e-2 2.6517e-2 1.01

101 1.3305e-1 6.6461e-2 4.4273e-2 3.3189e-2 2.6542e-2 1.00
10−4 102 1.3300e-1 6.6446e-2 4.4268e-2 3.3187e-2 2.6543e-2 1.00

103 1.3300e-1 6.6446e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00
104 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00
105 1.3300e-1 6.6445e-2 4.4267e-2 3.3187e-2 2.6543e-2 1.00

H1 relative errors of ph
0 2.3215e-2 1.1619e-2 7.7475e-3 5.8110e-3 4.6490e-3 1.00
1 2.3209e-2 1.1619e-2 7.7474e-3 5.8110e-3 4.6490e-3 1.00

101 2.3264e-2 1.1623e-2 7.7487e-3 5.8115e-3 4.6492e-3 1.00
10−2 102 2.3946e-2 1.2205e-2 7.8434e-3 5.8400e-3 4.6609e-3 1.02

103 2.4021e-2 1.2314e-2 8.3723e-3 6.3887e-3 5.1926e-3 0.95
104 2.4031e-2 1.2337e-2 8.4072e-3 6.4338e-3 5.2452e-3 0.94
105 2.4034e-2 1.2339e-2 8.4115e-3 6.4401e-3 5.2537e-3 0.94
0 2.3211e-2 1.1619e-2 7.7475e-3 5.8110e-3 4.6490e-3 1.00
1 2.3189e-2 1.1618e-2 7.7473e-3 5.8110e-3 4.6490e-3 1.00

101 2.3171e-2 1.1618e-2 7.7471e-3 5.8109e-3 4.6490e-3 1.00
10−3 102 2.3172e-2 1.1618e-2 7.7513e-3 5.8158e-3 4.6540e-3 1.00

103 2.3172e-2 1.1619e-2 7.7518e-3 5.8164e-3 4.6547e-3 1.00
104 2.3173e-2 1.1619e-2 7.7519e-3 5.8165e-3 4.6548e-3 1.00
105 2.3173e-2 1.1619e-2 7.7519e-3 5.8165e-3 4.6548e-3 1.00
0 2.3212e-2 1.1619e-2 7.7475e-3 5.8110e-3 4.6490e-3 1.00
1 2.3164e-2 1.1612e-2 7.7463e-3 5.8107e-3 4.6489e-3 1.00

101 2.3163e-2 1.1611e-2 7.7450e-3 5.8099e-3 4.6484e-3 1.00
10−4 102 2.3163e-2 1.1611e-2 7.7449e-3 5.8099e-3 4.6484e-3 1.00

103 2.3163e-2 1.1611e-2 7.7449e-3 5.8099e-3 4.6484e-3 1.00
104 2.3163e-2 1.1611e-2 7.7449e-3 5.8099e-3 4.6484e-3 1.00
105 2.3163e-2 1.1611e-2 7.7449e-3 5.8099e-3 4.6484e-3 1.00
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Figure 3: Elevation plots of the exact solutions and the approximate solutions on
an unstructured triangular mesh with h∗ = 1/20, where ν = 10−3 and σ = 105
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Figure 4: Statement of the boundary conditions of the lid-driven cavity flow prob-
lem for t ∈ [0, T].
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Figure 5: Contours of stream function and pressure at the steady state produced by
the Barrenechea-Valentin stabilized FEM (2.8) on a uniform triangular mesh with
h∗ = 1/40 for the time-dependent lid-driven cavity flow problem, where ν = 10−3

and δt = 10−3 (σ = 103).
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Figure 6: Vertical cross section of the velocity component u1 at x = 0.5 of the time-
independent lid-driven cavity flow problem with ν = 10−3 and σ = 103, where
h∗ = 1/20.
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