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Abstract. A morbidostat is a bacteria culture device that maintains a nearly constant microbial
population for the selection of drug-resistant mutants via a feedback algorithm. In this paper,
the global dynamics of a microbial species undergoing sequential evolution are studied in detail to
elucidate the operation of a morbidostat. The cultivation of the microbes is assumed to be under
periodic dilution, and a simple threshold algorithm is used as feedback. We also prove the extinction
and uniform persistence of all species with both forward and backward mutation in a sequential
evolution scenario. Numerical simulations for the case of logistic growth and the Hill function for
drug inhibition are also applied to verify our theoretical results. The theoretical framework elucidates
the generic features of the operation of a morbidostat under drug-inhibitor-induced feedback and will
provide a useful aid for the design of experiments.
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1. Introduction. Antibiotic drug resistance is a global health problem [1]. To-
day, clinically important bacteria are characterized by their resistance to single or
multiple drugs. Antibiotic drug resistance mechanisms include (1) modification and
deactivation of the antibiotic by expression of certain enzymes; (2) development of an
active efflux for the drug; and (3) alteration of the intracellular drug target such as
the ribosome, metabolic enzymes, or proteins involved in DNA replications or cell wall
synthesis. The acquisition of high-level antibiotic resistance has been discovered in
vivo. Historically, penicillin-resistant Staphylococcus aureus was discovered soon after
the introduction of penicillin in clinical environments [2]. In a more recent example,
antibiotic drug resistance has been studied by running the whole genome sequencing
of clinical isolates from patients suffering from endocarditis (S. aureus infection of the
heart muscle) and undergoing antibiotic treatment [3]. Through the course of infection
over a 3-month period, a total of 35 point mutations were accumulated, many asso-
ciated with the acquisition of antibiotic resistance. Increasing minimum inhibitory
concentrations are also observed. Although the in vivo evolution of drug resistance
can be studied retrospectively, these experiments lack systematic control over the
environmental conditions for drug resistance. Alternatively, adaptive laboratory evo-
lution can be used to study the molecular evolution of a microbial species undergoing
selection pressure from antibiotic drugs [4]. Recently, many antibioticdrug-resistant
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DRUG RESISTANT BACTERIA IN A MORBIDOSTAT 471

evolution experiments have attempted to elucidate the emergence of antibiotic drug
resistance under well-controlled laboratory conditions. For example, Austin’s group
demonstrated that the drug concentration gradient can lead to the rapid emergence
of antibiotic drug resistance in microfluidic devices [5]. Hwa’s group later developed a
compartment model [6] to explain this phenomenon, based on the earlier theoretical
consideration of stochastic evolution in a source and sink scenario [7]. Advances in
synthetic biology and microfluidic techniques culminated in Hwa’s work on an exper-
imentally validated model connecting the innate growth stability under the influence
of translation-inhibiting antibiotic chloramphenicol to detailed biophysical processes
and biochemistry such as passive diffusion and drug and enzyme interaction [8]. In
short, during the microbial growth stage, the microbe can develop antibiotic drug
resistance by constitutively expressing chloramphenicol acetyltransferase (CAT), an
enzyme that deactivates chloramphenicol. The feedback model consists of an influx
of chloramphenicol, microbial growth, and the CAT concentration.

Recently, a more advanced chemostat [9] known as a morbidostat has been devel-
oped with the aim of imposing drug selection pressure to induce mutations in a more
systematic fashion [10]. A morbidostat is a microbial selection device that continu-
ously adjusts the antibiotic concentration to maintain a nearly constant population.
In one incarnation, as illustrated by Figure 1, the microbial population can be moni-
tored by recording the optical density. The addition of the drug is computer-controlled
based on a prescribed feedback algorithm. Samples are frozen daily to serve as the
“fossil record” of the evolution, and a small fraction is used to inoculate a fresh batch
of the medium and restart another growth cycle. After the experiment has run its
course, the daily frozen samples are thawed and the inhibitor concentrations are char-
acterized. These samples are also analyzed with whole genome sequencing techniques
to reveal the molecular mechanism for the drug resistance. In this work, we present
a theory to not only reproduce the essential features of this mechanism but also yield
sufficient insight to provide guidelines for the analysis of the experimental data. It is
our hope that the theory will aid the design of new experiments by identifying key pa-
rameters based on existing experimental data in the literature. The remainder of this
paper is organized as follows. In section 2, we specifically introduce two deterministic

Fig. 1. A schematic of the morbidostat. A morbidostat is a continuous-culture device that
automatically tunes inhibitor concentration to maintain constant growth inhibition. The assay runs
in cycles of growth periods (T ) and adds dilutions with either fresh medium (blue) or drug solution
(magenta) based on a threshold feedback algorithm. The population is diluted with drug solution
when the total bacteria density exceeds the preset threshold value (U).
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models for the selection of drug-resistant bacteria in the morbidostat. The first one
deals with sequential forward mutation with one wild type and N mutant species. The
second model deals with the same sequential evolution but allows both forward and
backward mutations. In section 3, we study the global dynamics of the morbidostat
model in two cases and state the main results of this paper. The proofs are deferred
to the appendix. In section 4, we present the results of numerical simulations with
plausible parameters to verify key results on the global dynamics. Section 5 is the
section of conclusion and discussion.

2. Description of our models. In the simplest scenario, we can formulate the
transition from a wild type population to N mutant strains. In actual experiments
conducted by Kishony’s group [10], the device maintained a nearly constant popu-
lation via computer-controlled feedback. The fitness test runs in cycles of growth
periods T . For the forward mutation model (see Figure 2) and forward-backward
mutation model (see Figure 3), the growth dynamics with the nutrient substrate
S under the influence of the drug inhibitor P are given by models (2.1) and (2.2),
respectively. 

dS
dt = − 1

γ g0(S)f0(P )u− 1
γ

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − qivi,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1,
dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(2.1)



dS
dt = − 1

γ g0(S)f0(P )u− 1
γ

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u+ q̃0v1,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1 − q̃N−1vN ,
dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(2.2)

where i = 1, 2, . . . , N − 1, and v0 = u, u, and vi are the volume densities of the wild
type and mutant populations, respectively; γ is the yield constant. In (2.1) and (2.2),
the growth rates of the wild type and mutants are given by g0(S) and gi(S), which
satisfy g0(0) = 0, g′0(S) > 0, gi(0) = 0, and g′i(S) > 0. The bacteria are assumed to
consume the drug while the drug inhibits the growth of bacteria. We denote h0(P )
and hi(P ) as the consumption rates of inhibitor P for the wild type bacteria u and

Fig. 2. Forward mutations between species. Mutant vi mutates to mutant vi+1 with a forward
mutation rate qi, and there are no backward mutations. We have v0 = u and i = 0, 1, 2, . . . , N − 1.

Fig. 3. Forward-backward mutations between species. Mutant vi mutates to mutant vi+1 with
a forward mutation rate qi, while mutant vi+1 mutates to mutant vi with a backward mutation rate
q̃i. We have v0 = u and i = 0, 1, 2, . . . , N − 1.
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mutants vi, respectively. Furthermore, h0(P ) and hi(P ) are nonnegative functions
which are increasing in P . The effect of the drug inhibition is described by f0(P ) and
fi(P ) and here we use the convention that when P = 0, f0(0) = 1 and fi(0) = 1.
Meanwhile, f ′i(P ) < 0 since a larger drug concentration leads to stronger inhibition
of the bacteria. Because the mutants have stronger resistance to the inhibitor than
the wild type, we have f0(P ) ≤ f1(P ) ≤ · · · ≤ fN (P ). More generally, it is reasonable
to assume that the wild type grows more slowly than the mutants in the inhibitor
environment, which is our basic assumption as follows:

g0(S)f0(P ) < g1(S)f1(P ) < · · · < gN (S)fN (P ) for S 6= 0, P 6= 0;(2.3)

qi are the forward mutation rates while q̃i are the backward mutation rates. We
assume that the mutation rates qi and q̃i are quite small compared with the difference
of growth rates gi(S)fi(P )− gi−1(S)fi−1(P ) for all i = 1, 2, . . . , N .

The resetting of the nutrient and cells at t = Tn = nT (n = 0, 1, 2, . . .) can be
written as  S(T+

n ) = dS(T−n ) + (1− d)S(0),
u(T+

n ) = du(T−n ),
vi(T

+
n ) = dvi(T

−
n ),

(2.4)

where 0 < d < 1 is the dilution ratio of the existing substrate immediately before the
dilution step. A fraction, 1 − d, of the existing substrate is removed and the fresh
input substrate of input concentration S(0) is used to refill. As a result, this dilution
step contributes a term (1− d)S(0). T−n and T+

n denote the time immediately before
and after the dilution step at t = nT . In mathematical terms, the definitions for T−n
and T+

n are given by

T−n = lim
ε→0−

nT + ε, T+
n = lim

ε→0+
nT + ε.

The resetting of the initial condition for the drug concentration P depends on
the result from a feedback algorithm. Without the drug injection, the resetting of the
initial condition is given by

P (T+
n ) = dP (T−n ).

With the drug injection and input drug concentration P (0) during the dilution step,
the resetting of the initial condition is given by

P (T+
n ) = dP (T−n ) + (1− d)P (0).

To be specific, we use a threshold algorithm as an example. The drug injection
is invoked if the following condition is fulfilled:(

u+

N∑
i=1

vi

)
(T−n ) ≥ U,(2.5)

where U is the threshold population density.

3. Statement of main results. We first do some simplifications for models
(2.1) and (2.2) to make them more mathematically tractable. By scaling u → u

γ ,

vi → vi
γ , h0(P ) → γh0(P ), and hi(P ) → γhi(P ) for i = 1, 2, 3, . . . , N , we obtain the

following scaled models of models (2.1) and (2.2), respectively:
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dS
dt = −g0(S)f0(P )u−

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − qivi,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1,
dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(3.1)



dS
dt = −g0(S)f0(P )u−

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u+ q̃0v1,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1 − q̃N−1vN ,
dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(3.2)

for Tn−1 < t < Tn, and the resetting conditions at t = Tn are

S(T+
n ) = dS(T−n ) + (1− d)S(0),

u(T+
n ) = du(T−n ),

vi(T
+
n ) = dvi(T

−
n ),

P (T+
n ) =

{
dP (T−n ) if (u+

∑N
i=1 vi)(T

−
n ) < U,

dP (T−n ) + (1− d)P (0) if (u+
∑N
i=1 vi)(T

−
n ) ≥ U,

(3.3)

where i = 1, 2, . . . , N − 1, and n = 1, 2, 3, . . . .
First we state the results about the global dynamics of the morbidostat model

with only forward mutations.

Theorem 3.1. For the model (3.1) with resetting conditions (3.3), the wild type
bacteria u and mutants vi, i = 1, 2, 3, . . . , N − 1, go extinct in the long term, i.e.,
un → 0, (vi)n → 0 as n→∞, i = 1, 2, 3, . . . , N − 1. Furthermore, the following hold:

(i) If 0 < d < exp (−gN (S(0))T ), then (vN )n → 0 and Pn → 0 as n → ∞. In
other words, all the mutants go extinct, and inhibitor P goes to 0 in the long
term in this case.

(ii) If exp (−gN (S(0))T ) < d < 1, then there exist 0 < d1 < d2 < 1 such that
(a) if exp (−gN (S(0))T ) < d < d1, then we have (vN )n → ṽN > 0 and

Pn → 0 as n → ∞; in this case, the most resistant microbe vN will
survive while inhibitor P goes to 0 in the long term;

(b) if d2 < d < 1, then (vN )n → v̄N , Pn → P̄ as n → ∞; in this case, the
most resistant microbe vN and inhibitor P will persist in the morbidostat,
and their densities will be v̄N and P̄ ;

(c) if d1 < d < d2, the most resistant microbe vN and inhibitor P will persist
in the morbidostat, and their densities may oscillate as the system is
trying to maintain a constant bacteria density through feedback.

Remark 3.2. By persistence of a species we mean continued existence in the de-
terministic sense, i.e., lim supt→∞N(t) > 0, where N(t) is the population of species
N at time t [11].

Theorem 3.1 indicates that the competitive exclusion principle holds when we
consider the case with only forward mutation in the morbidostat.

Remark 3.3. From Theorem 3.1, there are three situations in which the most
resistant microbe vN goes extinction, those are

• when the dilution ratio d is small,
• when the the period T is small, or
• when the input nutrient concentration S(0) is small.
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Remark 3.4. When the most resistant microbe vN survives, there are three pos-
sible outcomes for inhibitor P :

• There is no inhibitor pumped into the morbidostat, which corresponds to
subcase (a) in Theorem 3.1.

• The inhibitor will be pumped into the morbidostat in every dilution cycle,
which corresponds to subcase (b) in Theorem 3.1.

• The inhibitor P and most resistant microbe vN may oscillate, which corre-
sponds to subcase (c) in Theorem 3.1.

Next we consider the case with both of forward and backward mutations.

Theorem 3.5. Consider the model (3.2) with resetting conditions (3.3), we have
the following:

(i) The wild type bacteria u and mutants vi, i = 1, 2, 3, . . . , N , either go extinct
or persist. Furthermore, in the latter case the most resistant microbe vN
dominates the rest of the other species provided the mutation rates q̃i are
sufficiently small.

(ii) There exist 0 < d̂1 < d̂2 < 1, where d̂1 = d1, d̂2 > d2, such that

(a) if 0 < d < d̂1, then Pn → 0 as n → ∞, which indicates there is no
inhibitor pumped into morbidostat in the long term;

(b) if d̂2 < d < 1, then Pn → P̄ > 0 as n → ∞; in this case, the inhibitor
will be pumped into the morbidostat after each dilution cycle in the long
term;

(c) if d̂1 < d < d̂2, wild type bacteria u, mutant vi, i = 1, 2, 3, . . . , N ,
and inhibitor P will persist in the morbidostat, and their densities may
oscillate as the system is trying to maintain constant bacteria density vN
through feedback. In this case, although the wild type u and the mutants
vi, i = 1, 2, 3, . . . , N , persist, the most resistant microbe vN is in fact
dominate provided the mutation rates q̃i are sufficiently small.

Theorem 3.5 indicates that either all species go extinct or all species persist when
there are both forward and backward mutations. Remark 3.3 of Theorem 3.1 still
holds for Theorem 3.5. On the other hand, due to small backward mutation rates
when the species persist, the most resistant species dominates the rest of species. Then
Remark 3.4 of Theorem 3.1 still holds for Theorem 3.5. It is noted that d2 < d̂2, hence
the region of hard inhibitor pumping is smaller than the case of forward mutation.
This explains why in the operational diagrams the region D in Figure 15 is smaller
than that of Figure 14.

Remark 3.6. Theorems 3.1 and 3.5 indicate that the morbidostat selects the most
resistant microbe.

4. Numerical simulation. In this section, we summarize the conditions where
simulations are done with realistic parameters.

For simplicity, we assume that both the wild type and the mutants have equal
uptake function and the growth takes the logistic form, namely,

g0(S) = gi(S) = mS, i = 1, 2, 3, . . . , N.(4.1)

The consumption functions h0(P ) and hi(P ) are assumed to take the Holling Type
II function form [11],

h0(P ) = hi(P ) =
rP

a+ P
, i = 1, 2, 3, . . . , N.
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We assume the functions f0(P ) and fi(P ) take the Hill function form of order L,
which are

(4.2)


f0(P ) = 1

1+
(

P
K0

)L ,

fi(P ) = 1

1+
(

P
Ki

)L ,

where i = 1, 2, 3, . . . , N . Note that the order L stems from the allosteric coopera-
tivity of the drug inhibition [17]. The drug inhibition effects depend on the detailed
mechanism. For example, they can result from the binding of the antibiotic drug to
the metabolic enzyme that synthesizes the key precursor of biomass production of
the bacteria. Taking trimethoprim (TMP) as a specific example, this antibiotic binds
to dihydrofolate reductase (DHFR), an enzyme that controls the biosynthesis of folic
acid. The mutation of the gene encoding DHFR will modify the binding affinity of
TMP [10]. The parameters K0 and Ki in (4.2) can actually be extracted from the
experimental values of IC50, defined as the drug inhibitor concentration at which the
growth rate is 50% of the maximal growth rate. The sample volume in the culture
vessel of the morbidostat is 10 ml, and the confluent density of E. Coli is typically
109 cell/ml. For simplicity, we assume that the morbidostat operates at around 10%
of the confluent density, which is set by the threshold population U in (2.5). We can
conveniently set the yield constant γ to be 1, so that one unit of substrate density
will transform to one unit of bacteria. With the volume units set to 0.1 nl, the in-
put substrate S(0) = 100 corresponds to 109 cell/ml. The constants K0 and Ki in
the drug inhibition function are set to 1 and 10i, and the order in the Hill function
L = 1, 2, 3. We first consider the forward mutation rates q = 10−4hr−1. Typically,
the dilution ratio d = 0.9 and growth period T = 0.2 hr are set such that the effec-
tive dilution rate ln(1 − d)/T = 0.5 hr−1. The growth rate is set by the constant
m to be 8 × 10−3 hr−1 in the logistic growth function. The initial conditions are
S(0) = 100, u(0) = 0.01, v(0) = 0, and P (0) = 0. We demonstrate our theoretical
results by conducting the following simulations.

4.1. Single mutant with forward mutations. We first assume that there is
wild type u and single mutant v in the morbidostat and there is no backward mutation.
Then we have the morbidostat model in the following form:

dS
dt = −g0(S)f0(P )u− g1(S)f1(P )v,
du
dt = g0(S)f0(P )u− qu,
dv
dt = g1(S)f1(P )v + qv,
dP
dt = −h0(P )u− h1(P )v

(4.3)

for Tn−1 < t < Tn. The resetting conditions at t = Tn (n = 0, 1, 2, . . .) can be written
as 

S(T+
n ) = dS(T−n ) + (1− d)S(0),

u(T+
n ) = du(T−n ),

v(T+
n ) = dv(T−n ),

P (T+
n ) =

{
dP (T−n ) if (u+ v)(T−n ) < U,
dP (T−n ) + (1− d)P (0) if (u+ v)(T−n ) ≥ U.

(4.4)

Straightforward calculation shows that z̄ = 9.1644 and w̄ = 28.9818 by the parameters
given above and P (0) = 3, r = 0.008, and a = 0.05 when U = 10.
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Fig. 4. Equilibrium densities showing the influence of d. In this figure, we fix U = 10 and
obtain the equilibrium densities of system (4.3) with resetting conditions (4.4) for 5,000 periodic
cycles for different dilution ratio d. The mutant densities and the inhibitor concentrations right
after the dilution step in the last 200 cycles are plotted. When d < 0.86, both the mutant and
inhibitor go extinct in the long term; when 0.86 < d < 0.872, the inhibitor goes extinct while the
mutant persists at a fixed level for each d; when 0.872 < d < 0.899, both the mutant and inhibitor
persists and oscillate for each d; when d > 0.899, both the mutant and inhibitor persist at fixed levels
for each d. The inset figure shows the details of mutant densities when d varies from 0.87 to 0.9.

We first fix the threshold U = 10 and let the dilution ratio d vary from 0.85
to 0.91; a bifurcation diagram showing the influence of d on the steady states of
system (4.3) with resetting conditions (4.4) is demonstrated in Figure 4. In this
figure, we simulate the equilibrium densities of system (4.3) with resetting conditions
(4.4) for 5,000 periodic cycles for a different dilution ratio d. For each d, the mutant
densities and drug concentrations right after the dilution step for the last 200 times
are plotted. From Figure 4, we observe that when d < 0.86, we have vn → 0 and
Pn → 0 as n → ∞, which means both the mutant and inhibitor go extinct in the
long term. For d ∈ (0.86, 0.872), we have vn → ṽ(d) and Pn → 0 and as n → ∞,
where ṽ(d) is a constant related to the parameter d. It implies that the mutant will
be maintained at a constant concentration which is related to the parameter d, while
the inhibitor will vanish in the long term. When d is close to 0.872, the fixed point
(ṽ(d), 0) becomes unstable and chaotic for d ∈ (0.872, 0.899). There is a fixed point
(v̄, P̄ ) for the system (4.3) with resetting conditions (4.4) for d > 0.899.

Similarly, if we fix d = 0.9, a bifurcation diagram showing the influence of
U on the steady states of system (4.3) with resetting conditions (4.4) is demon-
strated in Figure 5 for U varies from 0 to 40. We observe that there are three cases
for U :

(i) When U > w̄
d = 32.202, which satisfies subcase (a) in Theorem 3.1, we have

vn → w̄ and Pn → 0 as n → ∞. More precisely, the fixed point (ṽ, 0) =
(w̄, 0) = (28.9819, 0) attracts all positive initial data, which agrees well with
the theoretical analysis.

(ii) When U < z̄
d = 10.183, which satisfies subcase (b) in Theorem 3.1, we have

vn → v̄ = 10.1630 and Pn → P̄ = 2.8563 as n → ∞. More precisely, there
exists a fixed point (v̄, P̄ ) = (10.1630, 2.8563) for system (4.3) with resetting
conditions (4.4) in this case.
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Fig. 5. Equilibrium densities showing the influence of U . In this figure, we fix d = 0.9 and
obtain the equilibrium densities of system (4.3) with resetting conditions (4.4) for 5,000 periodic
cycles for different threshold U . The mutant densities and the inhibitor concentrations right after
the dilution step in the last 200 cycles are plotted. When U < 10.183, both the mutant and inhibitor
persist at fixed levels for each U ; when 10.183 < U < 32.202, both the mutant and inhibitor persist
and oscillate for each U ; when U > 32.202, the inhibitor goes extinct while the mutant persists at a
fixed level for each U .

(iii) If 10.183 < U < 32.202, in this case, we have z̄
d < U < w̄

d , which is subcase
(c) in Theorem 3.1. From the simulation results, we can see the inhibitor
concentration P oscillates between 0 and P̄ , which is P ∈ (0, 2.8563), while
the bacteria density v will be maintained nearly constant, and furthermore
v ∈ (v̄, ṽ) = (10.1630, 28.9819).

Next, we demonstrate the long-time dynamics of the morbidostat model using
different U in three cases, respectively. We choose P (0) = 10 and d = 0.9 in the
following simulations.

When U = 33, it implies z̄ < w̄ < dU , which is subcase (a) in Theorem 3.1.
The long-term dynamics of model (4.3) with resetting conditions (4.4) are shown in
Figure 6. The insets show the oscillations of the mutant and substrate concentrations
in the last 100 dilution steps. As the figure shows, vn → w̄ and Pn → 0 as n → ∞
in this case. In other words, the fixed point (ṽ, 0) = (w̄, 0) attracts all positive initial
data, which verifies Theorem 3.1.

The dynamics of model (4.3) with resetting conditions (4.4) with U = 10 is shown
in Figure 7. In this case we have dU < z̄ < w̄, and the two conditions in subcase (b)
in Theorem 3.1 can be verified using the parameters given above. The figure shows
that vn → v̄ and Pn → P̄ as n → ∞ in this case. More precisely, there exists a
positive fixed point (v̄, P̄ ) for the morbidostat model (4.3) with resetting conditions
(4.4), which agrees well with the result in subcase (b) in Theorem 3.1.

Figure 8 demonstrates the long-term densities of the cells, substrate, and inhibitor
of model (4.3) with resetting conditions (4.4) when U = 15. In this case, we have
z̄ < dU < w̄, which is subcase (c) in Theorem 3.1. From the simulation results, we
can see the inhibitor concentration P oscillates between 0 and P̄ , while the bacteria
density v will be maintained nearly constant.

To make the situations in subcase (c) in Theorem 3.1 more clear, we choose
P (0) = 10, U = 15, and simulate the morbidostat model (4.3) with resetting conditions
(4.4) with some more parameters.
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Fig. 6. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4)
when U = 33. The wild type u and inhibitor P go extinct in the morbidostat, while mutant v and
substrate S persist at fixed values after each dilution cycle in the long term. The inset figure shows
the mutant density (green) and substrate concentration (blue) in the last 100 dilution cycles. In this
figure, we use S(0) = 100, T = 0.2 hr, d = 0.9, q = 10−4 hr−1, m = 0.008, r = 0.008, a = 0.05,
L = 1, and K = 10.

We first fix the mutation rate at q = 10−6 hr−1 and let L vary from 1 to 3.
Both the long-term concentrations of nutrient and inhibitor and the cell densities are
shown in Figure 9. It indicates that the mutant v drives u to extinction in each case,
and the mutant density is maintained nearly constant. The inhibitor concentration P
oscillated between 0 and P (0). As L grows bigger, more inhibitor P is needed to inhibit
the bacteria and to maintain v at a nearly constant level. However, the time needed
for v to take over is almost the same although the hill functional order L differs.

Next, we fix the hill functional order at L = 3 and make the mutation rate q vary
from 10−4 hr−1 to 10−8 hr−1. Both the concentrations of nutrient and inhibitor and
the cell densities are shown in Figure 10. The mutant v still drives u to extinction in
each case, and the mutant density is maintained nearly constant. It takes longer for
mutant v to take over when the mutation rate is lower. The inhibitor concentration
P oscillated between 0 and P (0). And the inhibitor concentration P is almost same
although mutation rates are different.
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Fig. 7. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4)
when U = 10. The wild type u goes extinct in the morbidostat, while mutant v, substrate S, and
inhibitor P persist at fixed values after each dilution cycle in the long term. The inset figure shows
the mutant density (green) and inhibitor concentration (red) in the last 100 dilution cycles. In this
figure, we use S(0) = 100, T = 0.2 hr, d = 0.9, q = 10−4 hr−1, m = 0.008, r = 0.008, a = 0.05,
L = 1, and K = 10.

From Figures 6 to 10, we have that the mutant v will drive wild type bacteria u
to extinction in the long term no matter what the threshold U is, and no matter how
small the mutation rate q and the Hill functional order L is. It shows that the exclusion
principle holds, which agrees well with our theoretical analysis in Theorem 3.1.

4.2. Two mutants with both forward and backward mutations. We then
assume there is wild type u and two mutants v1 and v2 in the morbidostat and
assume that the mutants are with forward-backward mutations. Then we have the
morbidostat model in the following form:

dS
dt = −g0(S)f0(P )u− g1(S)f1(P )v1 − g2(S)f2(P )v2,
du
dt = g0(S)f0(P )u− q0u+ q̃0v1,
dv1
dt = g1(S)f1(P )v1 + q0u− q̃0v1 − q1v1 + q̃1v2,
dv2
dt = g2(S)f2(P )v2 + q1v1 − q̃1v2,
dP
dt = −h0(P )u− h1(P )v1 − h2(P )v2

(4.5)D
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Fig. 8. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4)
when U = 15. The wild type u goes extinct in the morbidostat, while mutant v, substrate S, and
inhibitor P oscillate in the long term. The inset figure shows the mutant density (green) and inhibitor
concentration (red) in the last 100 dilution cycles. In this figure, we use S(0) = 100, T = 0.2 hr,
d = 0.9, q = 10−4 hr−1, m = 0.008, r = 0.008, a = 0.05, L = 1, and K = 10.

for Tn−1 < t < Tn. The resetting conditions at t = Tn (n = 0, 1, 2, . . .) can be
written as

S(T+
n ) = dS(T−n ) + (1− d)S(0),

u(T+
n ) = du(T−n ),

v1(T+
n ) = dv1(T−n ),

v2(T+
n ) = dv2(T−n ),

P (T+
n ) =

{
dP (T−n ) if (u+ v1 + v2)(T−n ) < U,
dP (T−n ) + (1− d)P (0) if (u+ v1 + v2)(T−n ) ≥ U.

(4.6)

The simulation results of system (4.5) with resetting conditions (4.6) show that
either all the cells go to extinction (see Figure 11) or persist (see Figures 12 and 13) in
the morbidostat, which verifies our theoretical results in Theorem 3.5. In Figure 12,
the most resistant mutant dominates the final population with the coexistence of a
small fraction of other species (wild type and mutant 1) due to the assumption of small
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Fig. 9. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4)
when L = 1 (upper panel), 2 (middle panel), and 3 (lower panel), respectively. Wild type u goes
extinct in each case, while mutant v persists at a nearly constant level. More inhibitors are needed
to maintain the microbes concentration at a nearly constant level as L becomes larger. In this figure,
we use S(0) = 100, T = 0.2 hr, d = 0.9, q = 10−6 hr−1, m = 0.008, r = 0.008, a = 0.05, and
K = 10.

mutation rates as compared to the growth rates gi(S
(0)) (i = 0, 1, 2). In Figure 13,

the coexistence of all the species is obvious when q0 = q1 = q̃0 = q̃1 = 0.05.

4.3. Operation diagrams. Figure 14 presents the operation diagrams of d-T ,
d-S(0), d-U , and d-P (0) for experimental use when there are only forward mutations
in the morbidostat. In the operation diagrams, logistic growth (4.1) and Hill function
(4.2) are used, and m = 0.008, K0 = 1, K1 = 10. We assume that there are only
forward mutations with a mutation rate q = 10−6 hr−1. There are four regions in
each diagram. Region A is the extinction region where the last mutant vN goes to
extinction. If the parameters fall in region B, then the last mutant vN survives, while
inhibitor P goes to zero in the long term. Region C is the region where the last
mutant vN survives, and inhibitor P oscillates. Region D is the region where the last
mutant vN survives, and inhibitor P goes to a fixed value.

Figure 15 presents the operation diagrams of d-T , d-S(0), d-U , and d-P (0) for
experimental use when there are both forward and backward mutations. The param-
eters used are the same as in Figure 14, and a backward mutation rate q̃ = 10−6 hr−1

is considered in these four operation diagrams. In this figure, regions A, B, C, and
D have the same interpretations as in Figure 14. It shows that backward mutations
do not have any effect on regions A and B. However, they expand region C while
shrinking region D in each operation diagram.

5. Conclusion and discussion. In conclusion, we have outlined a mechanistic
theory to describe the outcome of microbial growth in a morbidostat. The theory
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Fig. 10. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4)
when q = 10−4 hr−1 (upper panel), 10−6 hr−1 (middle panel), and 10−8 hr−1 (lower panel),
respectively. Wild type u goes extinct in each case, while mutant v persists at a nearly constant
level. It takes a longer time for the mutant to take over as the mutation rate becomes lower. In this
figure, we use S(0) = 100, T = 0.2 hr, d = 0.9, m = 0.008, r = 0.008, a = 0.05, L = 3, and K = 10.
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Fig. 11. Extinction of all the microbes of system (4.5) with resetting conditions (4.6). In this
case, all the cells and inhibitor go to extinction in the morbidostat, while the substrate persists at a
fixed level. In this figure, we use S(0) = 100, T = 0.2 hr, d = 0.8, q0 = q1 = q̃0 = q̃1 = 10−4 hr−1,
m = 0.008, r = 0.008, a = 0.05, L = 1, K0 = 3, and K1 = 10.

incorporates a simple threshold algorithm to recapitulate the feedback effects due to
antibiotic drug inhibition. In the simplest scenario, we considered the case of sequen-
tial evolution with only forward mutation. This model serves as a concrete example
for different modes of operation of the morbidostat. The global dynamics were dis-
cussed for three cases. The main result of Theorem 3.1 for case (i) describes a total
washout if 0 < d < exp (−gN (S(0))T ), as expected from a serial dilution transfer cul-
tivation [12]. And there are three possible outcomes when the most resistant mutant
survives, which are stated in case (ii). Subcase (a) describes the dilution of the drug
and survival of the most resistant mutant. Subcase (b) describes a system that is
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Fig. 12. Persistence of all the microbes of system (4.5) with resetting conditions (4.6). In this
case, all the microbes persist in the morbidostat. However, the most resistant microbe dominates all
the species. In this figure, we use S(0) = 100, T = 0.2 hr, d = 0.9, q0 = q1 = q̃0 = q̃1 = 10−4 hr−1,
m = 0.008, r = 0.008, a = 0.05, L = 1, K0 = 3, and K1 = 10.

trying to pump as hard as possible to suppress the total population. As a result, the
final inhibitor concentration asymptotically approached the input inhibitor concen-
tration P (0). Subcase (c) describes the case of oscillation due to the simple threshold
feedback used in our analysis. All three subcases were verified using numerical simu-
lations. When backward mutation was included in the evolution of the mutants, the
long-term outcome in the morbidostat illustrated the uniform persistence case. We
included a simple three-species case to demonstrate these two scenarios.

Although our model considered sequential evolution with mutation, it can be
generalized to consider the microbial ecology of a serial transfer dilution bio-reactor
with feedback and constant exchange rates between the species. In real experiments,
the scenario is much more complicated than the models considered here. In general,
it is possible that multiple mutants would be accessible to the wild type species,
and a more complicated evolution could be incorporated into the simulations [18].
Experiments could also be conducted to evolve the bacteria so as to acquire not only
single drug resistance but also multiple drug resistance. The theory outlined here can
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Fig. 13. Persistence of all the microbes of system (4.5) with resetting conditions (4.6). In this
case, all the microbes persist in the morbidostat. In this figure, we use S(0) = 100, T = 0.2 hr,
d = 0.9, q0 = q1 = q̃0 = q̃1 = 0.05 hr−1, m = 0.008, r = 0.008, a = 0.05, L = 1, K0 = 3, and
K1 = 10.

be generalized to include these scenarios in a straightforward way in the computer
simulations. With the theory presented here, one could in principle calculate the
population dynamics step by step for a new experiment, or reconcile the experimental
results after an experiment has been completed. Finally, our model is deterministic in
nature, whereas microbial mutation is stochastic. It will be interesting to generalize
our model or simulation to take account of the stochastic nature of the mutation [8].

Appendix A. For the scaled models (3.1) and (3.2) with resetting conditions
(3.3), we have the following results.

Lemma A.1. The total population density of the nutrient and bacteria in the mor-
bidostat converges to S(0). In other words, we have S(T+

n ) + u(T+
n ) +

∑N
i=1 vi(T

+
n )→

S(0) as n→∞.
Lemma A.2. For the system (3.1) and (3.2) with resetting conditions (3.3), there

exists some δ > 0 such that S(t) ≥ δ > 0 for all t ≥ 0.
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Fig. 14. Operation diagrams when there are only forward mutations: Region A is the extinction
region where all the species go to extinction; Region B is the region where only the most resistant
microbe survives; Region C is the region where the most resistant microbe survives and inhibitor
oscillates; Region D is the region where the most resistant microbe survives and inhibitor persists
at a fixed value.

Lemma A.1 states a conservation of species, while Lemma A.2 is a technical
lemma.

Proof of Lemma A.1.

Proof. Add the first N + 2 equations of models (3.1) and (3.2) together, respec-
tively, and define

C(t) = S(t) + u(t) +

N∑
i=1

vi(t);

then the following single equation is obtained:

C ′(t) = S′(t) + u′(t) +

N∑
i=1

v′i(t) = 0 for 0 < t < T.

It follows at once that

C(t) = C(0) = C(T−1 ) for 0 < t < T.

Together with the resetting condition at t = T , this leads to
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Fig. 15. Operation diagrams when there are both forward and backward mutations: Region
A is the extinction region where all the species go to extinction; Region B is the region only the
most resistant microbe survives; Region C is the region that the most resistant microbe survives and
inhibitor oscillates; Region D is the region that the most resistant microbe survives and inhibitor
persists at a fixed value.

C(T+
1 ) = S(T+

1 ) + u(T+
1 ) +

N∑
i=1

vi(T
+
1 )

= dS(T−1 ) + (1− d)S(0) + du(T−1 ) +

N∑
i=1

dvi(T
−
1 )

= dC(T−1 ) + (1− d)S(0) = dC(0) + (1− d)S(0).

Similarly, the total population density of nutrient S and bacteria u and vi right after
the second period takes the following form:

C(T+
2 ) = dC(T+

1 ) + (1− d)S(0)

= d2C(0) + (1− d)(1 + d)S(0).

Let Cn = C(T+
n ) be the total population following the nth dilution cycle. Then,

Cn = C(T+
n ) = dnC(0) + (1− d)(1 + d+ · · ·+ dn−1)S(0).

It implies Cn = Sn + un +
∑N
i=1(vi)n → S(0) as n→∞, and

S(t) + u(t) +

N∑
i=1

vi(t) ≡ Cn → S(0)(A.1)

for all t ∈ [Tn, Tn+1] as n→∞. That completes our proof.
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Proof of Lemma A.2.

Proof. For the morbidostat models (3.1) and (3.2) with condition (3.3), we have

dS

dt
= −g0(S)f0(P )u−

N∑
i=1

gi(S)fi(P )vi

≥ −gN (S)fN (P )

(
u+

N∑
i=1

vi

)

≥ −gN (S)

(
u+

N∑
i=1

vi

)

for t ∈ [T+
n , Tn+1]. From (A.1), for any ε > 0 and t ∈ [T+

n , Tn+1], there exists large
enough J0 = J0(ε) > 0 such that n ≥ J0 implies that

S(0) − S(t)− ε < u(t) +

N∑
i=1

vi(t) < S(0) − S(t) + ε.(A.2)

Therefore, for t ∈ [T+
n , T

+
n+1], we have{

dS
dt > −gN (S)(S(0) − S(t) + ε),
S(T+

n ) > (1− d)S(0).
(A.3)

Let S∗(t) be the solution of the following system:{
dS
dt = −gN (S)(S(0) − S(t) + ε),
S(0) = (1− d)S(0).

(A.4)

Then we have S(t) > S∗(t) for all t ∈ [T+
n , T

+
n+1], n ≥ J0. Choose δ > 0 such that

δ < min0≤t≤T {S∗(t)} and δ < min0≤t≤TJ0
{S(t)}; we then have S(t) > δ for all t ≥ 0.

That completes our proof.

Define a map Q by

Q(S0, u0, (v)0, P0) = (S1, u1, (v)1, P1),(A.5)

where v = (v1, v2, . . . , vN ), S1 = dS(T, S0, u0, (v)0, P0)+(1−d)S(0), u1 = du(T, S0, u0,
(v)0, P0), (v)1 = dv(T, S0, u0, (v)0, P0), P1 = P (T+, S0, u0, (v)0, P0), and (S(t, S0, u0,
(v)0, P0), u(t, S0, u0, (v)0, P0), v(t, S0, u0, (v)0, P0), P (t, S0, u0, (v)0, P0)) are the so-
lutions of (3.1) or (3.2) with initial conditions S(0) = S0, u(0) = u0, (v)(0) =
(v)0, P (0) = P0.

Let Sn = S(T+
n ), un = u(T+

n ), (v)n = (v)(T+
n ), Pn = P (T+

n ) be the values of the
vector of the population densities immediately following the nth dilution cycle; then

Q(Sn, un, (v)n, Pn) = (Sn+1, un+1, (v)n+1, Pn+1), n = 1, 2, 3, . . . .(A.6)

Global dynamics of the morbidostat model without backward muta-
tions. Consider the case of the forward mutations (3.1) with the resetting conditions
(3.3); we have the following competitive exclusion results.

Lemma A.3. The wild type bacteria u and mutants vi, where 1 ≤ i ≤ N − 1, go
extinct in the long term. More precisely, un → 0, (vi)n → 0 as n→∞, 1 ≤ i ≤ N−1.
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Proof of Lemma A.3.

Proof. From model (3.1), if letting ω(t) = u(t) + v1(t) + v2(t) + · · ·+ vN−1(t), it
is easy to check that

dω

dt
= g0(S)f0(P )u+ g1(S)f1(P )v1 + · · ·+ gN−1(S)fN−1(P )vN−1 − qN−1vN−1.

Since g0(S)f0(P ) ≤ g1(S)f1(P ) ≤ · · · ≤ gN−1(S)fN−1(P ) for all 0 < S ≤ S(0) and
0 ≤ P ≤ P (0), we have

dw

w
≤
(
gN−1(S)fN−1(P )− qN−1

vN−1

ω

)
dt.(A.7)

Integrating both sides of (A.7) over the interval (0, T ),∫ ω(T )

ω(0)

dω

ω
≤
∫ T

0

(
gN−1(S)fN−1(P )− qN−1

vN−1

ω

)
dt.

This implies

ω1

ω0
≤ d exp

(∫ T

0

gN−1(S)fN−1(P )dt

)
exp

(
−qN−1

∫ T

0

vN−1

ω
dt

)
,(A.8)

where u(0) + v1(0) + · · · + vN−1(0) = ω0, du(T ) + dv1(T ) + · · · + dvN−1(T ) = ω1 as
defined. Similarly, for the last mutants vN , we have the following equation:

(vN )1

(vN )0
= d exp

(∫ T

0

gN (S)fN (P )dt

)
exp

(
qN−1

∫ T

0

vN−1

vN
dt

)
.(A.9)

Multiply (A.8) by (A.9); it is easy to check

ω1

ω0
=

(vN )1

(vN )0
exp

(∫ T

0

(gN−1(S)fN−1(P )−gN (S)fN (P ))dt

)
exp

(
−qN−1

∫ T

0

vN−1

ω
dt

)

exp

(
−qN−1

∫ T

0

vN−1

vN
dt

)

≤ (vN )1

(vN )0
exp

(∫ T

0

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
.

We apply the same technique during the second periodic cycle (T, 2T ); then the
following inequality is obtained:

ω2

ω1
≤ (vN )2

(vN )1
exp

(∫ 2T

T

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
.

Similarly, during the ith periodic cycle ((i− 1)T, iT ), we have

ωi
ωi−1

≤ (vN )i
(vN )i−1

exp

(∫ iT

(i−1)T

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
,
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where i = 1, 2, 3, . . . , n. Multiply both sides of all the inequalities above; we have

ωn
ω0
≤ (vN )n

(vN )0
exp

(∫ nT

0

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
.

Since S(t) ≥ δ > 0 for all t > 0 and gN−1(S(t))fN−1(P (t)) < gN (S(t))fN (P (t)), we
have ωn → 0 as n → ∞ since (vN )n ≤ S(0). Therefore un → 0 and (vi)n → 0 as
n→∞ for 1 ≤ i ≤ N − 1.

From Lemmas A.1 and A.3, the forward mutation morbidostat model (3.1) with
resetting conditions (3.3) can be reduced to the following limiting system:{

dvN
dt = gN (S(0) − vN )fN (P )vN for Tn−1 < t < Tn,
dP
dt = −hN (P )vN for Tn−1 < t < Tn,

(A.10)

with resetting conditions at t = Tn,
vN (T+

n ) = dvN (T−n ),

P (T+
n ) =

{
dP (T−n ) if vN (T−n ) < U,
dP (T−n ) + (1− d)P (0) if vN (T−n ) ≥ U.

(A.11)

We denote (vN (t), P (t)) as the solution of model (A.10) with resetting conditions
(A.11), and ((vN )n, Pn) = (vN (T+

n ), P (T+
n )). The long-term dynamics of the mor-

bidostat model is our concern. In order to analyze the dynamics of the morbidostat,
we will first study two comparison systems.

Since
fN (P (0)) < fN (P ) ≤ 1

for 0 ≤ P < P (0), the first comparison system to be studied is as follows:{
dw
dt = gN (S(0) − w)w for Tn−1 < t < Tn,
w(T+

n ) = dw(T−n ) for t = Tn.
(A.12)

Let w(t) be the solution of the problem (A.12) and denote wn as the population density
right after the nth dilution cycle; then we know wn = w(T+

n ). Let x0 = w0, and define
map Q1 by Q1(x0) = Q1(w0) = w1 = dw(T,w0). Denote Φt(x0) = (w(t, w0)) as the
solution of the following equation:

dw

dt
= gN (S(0) − w)w(A.13)

with initial condition w(0) = w0.
We will next study the existence and stability of the fixed point of system (A.12).

Based on the results in [14], we have the following results.

Lemma A.4. For system (A.12),
(i) if 0 < d < exp

(
−gN

(
S(0)

)
T
)
, then the extinction fixed point w̄ = 0 is globally

attracting;
(ii) if exp

(
−gN

(
S(0)

)
T
)
< d < 1, then there is a unique positive fixed point

w̄ > 0 satisfying Q1(w̄) = w̄ and it attracts all positive initial data; in other
words, Q1(wn)→ w̄ > 0, for all w(0) ∈ (0, S(0)).

The second comparison system is as follows:{
dz
dt = gN (S(0) − z)fN (P (0))z for Tn−1 < t < Tn,
z(T+

n ) = dz(T−n ) for t = Tn.
(A.14)
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We denote z(t) as the solution of problem (A.14) and zn = z(T+
n ) as the population

density right after the nth dilution cycle. Define map Q2 by Q2(z0) = z1 = dz(T, z0).
For system (A.14), we have a similar result as the first comparison system. The post-
dilution density sequence zn converges to a fixed point, zn → z̄, where Q2(z̄) = z̄.
This fixed point may or may not be the trivial fixed point z̄ = 0. And the stability of
the fixed point can be given by the following lemma.

Lemma A.5. For system (A.14), we have the following two results:
(i) If 0 < d < exp

(
−gN

(
S(0)

)
fN
(
P (0)

)
T
)
, then the extinction fixed point z̄ = 0

is globally attracting.
(ii) If exp

(
−gN

(
S(0)

)
fN
(
P (0)

)
T
)
< d < 1, then there is a unique positive fixed

point z̄ > 0 satisfying Q2(z̄) = z̄ and it attracts all positive initial data, in
other words, Q2(zn) → z̄ > 0 for all z(0) ∈

(
0, S(0)

)
. Furthermore, at the

fixed point we have d exp (
∫ T

0
gN (S(0) − z(t, z̄))fN (P (0))dt) = 1.

Since

gN

(
S(0) − v

)
f
(
P (0)

)
v < gN

(
S(0) − v

)
f(P )v ≤ gN

(
S(0) − v

)
v,

from (A.10), (A.12), and (A.14), it follows that

zn < (vN )n ≤ wn.

Therefore, we have z̄ ≤ (vN )n ≤ w̄ for n sufficiently large.
For the fixed points of system (A.12) and (A.14) w̄ = w̄(d), z̄ = z̄(d), we have the

following results.

Lemma A.6. Let U < S(0):
(i) w̄(d) and z̄(d) satisfy w̄(1) = z̄(1) = S(0), w̄(d∗w) = z̄(d∗z) = 0, where d∗w =

exp{−gN (S(0))T}, d∗z = exp{−gN (S(0))fN (P (0))T}, and hence d∗w < d∗z.

(ii) Both w̄(d)
d and z̄(d)

d are strictly increasing in d.

(iii) There exist 0 < d1 < d2 < 1 such that w̄(d1)
d1

= U and z̄(d2)
d2

= U .

Proof of Lemma A.4.

Proof. Clearly, Q1(0) = 0 and Q1 is strictly increasing by uniqueness of solutions
of the initial value problem (A.13). Because w = S(0) is an equilibrium of (A.13), we
have

Q1(S(0)) = dS(0) < S(0),

which implies
0 < · · · < wn+1 < wn < wn−1 < · · · < S(0)

for all n ≥ 1. Therefore, the postdilution density sequence converges to a fixed point,
wn → w̄, where Q1(w̄) = w̄. This fixed point may or may not be the trivial fixed
point w̄ = 0. The stability of the fixed point is determined by

Q′1(x0) = Dx0
Q1(x0).

Then the stability of the trivial fixed point is determined by

Q′1(0) = d
∂w

∂w0
(T, 0),

where x(t) = ∂w
∂w0

(t) satisfies the variational equation

x′ = xgN (S(0)), x(0) = 1.
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Noticing that Q′1(0) = d exp (
∫ T

0
gN
(
S(0)

)
dt) > 0. The trivial fixed point is asymp-

totically stable if Q′1(0) < 1 and unstable if Q′1(0) > 1. That completes our proof.

Proof of Lemma A.6.

Proof. (i) As d = 1, from (A.12) and (A.14) it follows that wn → S(0), zn → S(0)

as n→∞. Hence w̄(1) = z̄(1) = S(0). By Lemma A.4(i) and Lemma A.5(i), we have
w̄(d∗w) = 0 and z̄(d∗z) = 0, where d∗w and d∗z are defined as above.

(ii) In order to prove w̄(d)
d is a strictly increasing function of d, we will first prove

w̄(d) is a strictly increasing function of d. Since w̄ is the fixed point of model (A.12),
we have

w̄(d) = dw (T, w̄) .(A.15)

Differentiating both sides of (A.15) with respect to d, yields

w̄′(d) =
w(T, w̄)

1− d∂w(T,w̄)
∂w̄

.(A.16)

From (A.16), if 1− d∂w(T,w̄)
∂w̄ > 0, then w̄′(d) > 0. Since

dw(t, w0)

dt
= gN

(
S(0) − w (t, w0)

)
w (t, w0)(A.17)

for t ∈ (0, T ), differentiating both sides of (A.17) with respect to w0, we have{
d
dt
∂w(t,w0)
∂w0

= ∂w(t,w0)
∂w0

[gN
(
S(0) − w(t, w0)

)
− g′N

(
S(0) − w(t, w0)

)
w(t, w0)],

∂w
∂w0

(0, w0) = 1.

Therefore,

∂w(t, w0)

∂w0
> 0(A.18)

and

∂w(T,w0)

∂w0
= exp

(∫ T

0

(
gN

(
S(0) − w(t, w0)

)
− g′N

(
S(0) − w(t, w0)

)
w(t, w0)

)
dt

)

< exp

(∫ T

0

(
gN

(
S(0) − w(t, w0)

))
dt

)

=
1

d
.

Then, we have

∂w̄(d)

∂d
=

w(T, w̄)

1− d∂w(T,w̄)
∂w̄

> 0.(A.19)

It implies w̄(d) is a strictly increasing function of d. Since w̄(d)
d = w (T, w̄) , by the

chain rule, we have (
w̄(d)

d

)′
=
∂w(T, w̄)

∂d
=
∂w(T, w̄)

∂w̄

∂w̄

∂d
.
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Therefore, from (A.18) and (A.19) we have ( w̄(d)
d )′ > 0.

By applying the same procedure to the second comparison system (A.14), we have
z̄(d)
d is also an increasing function of d.

The proof of (iii) follows directly from (i) and (ii) and the assumption U < S(0).
That completes our proof.

We will now study the dynamics of the solution of the limiting system (A.10)
with resetting conditions (A.11). According to the relations of fixed points z̄, w̄, and
threshold U , we have the main results in the following three cases.

Case 1: No drug inhibitor case of the limiting system. If d < d1, we have
z̄ < w̄ ≤ dU , and hence (vN )n ≤ dU for all large n, then the inhibitor P dilutes in
every dilution cycle. Therefore, there is no inhibitor pumped into the morbidostat.
And the inhibitor concentration Pn takes the form after the nth dilution cycle,

Pn < dPn−1 < · · · < dnP0,

since hi(P ) ≥ 0 for i = 1, 2, 3, . . . , N. From 0 < d < 1, it is obvious that Pn → 0 as
n→∞. System (A.10) with resetting condition (A.11) can be reduced to the limiting
system (A.12). Thus, in this case, we have (vN )n → w̄ as n→∞. More precisely, we
have the following results.

Lemma A.7. For the limiting system (A.10) with resetting conditions (A.11),
when d < d1,

(i) if 0 < d < exp (−gN (S(0))T ), then the extinction fixed point (0, 0) is globally
attracting;

(ii) if exp (−gN (S(0))T ) < d < d1, then there is a unique ṽN > 0 satisfying
Q(ṽN , 0) = (ṽN , 0) and the fixed point (ṽN , 0) attracts all positive initial data;
in other words, Q((ṽN )n, Pn)→ (ṽN , 0) for all vN (0) ∈ (0, S(0)), and P (0) ∈
(0, P (0)).

Remark A.8. Note that if 0 < d < exp (−gN (S(0))T ), this is simply the trivial
case of total washout. If exp (−gN (S(0))T ) < d < d1, the system will end up with zero
drug inhibitor concentration. Nevertheless, the last mutant wins. This result is simply
due to the assumption of forward mutation. The system will have drug inhibitor on
to drive all the mutant population into the most resistant mutant survival case.

Case 2: Hard inhibitor pumping of the limiting system. If d > d2, we
have dU < z̄ ≤ w̄, and hence (vN )n > dU for all large n. In this case, the inhibitor
P will be pumped into the morbidostat in every dilution cycle. In other words, the
resetting of inhibitor P will always follow the rule Pn = dP (nT ) + (1 − d)P (0) for
n = 1, 2, 3, . . . . Thus, after the nth dilution cycle, the inhibitor concentration Pn
satisfies

Pn < dPn−1 + (1− d)P (0)

< d2Pn−2 + (1− d)(1 + d)P (0)

< · · ·
< dnP0 + (1− d)(1 + d+ · · · dn−1)P (0)

since hi(P ) ≥ 0 for i = 1, 2, 3, . . . , N. It implies Pn < P (0) as n → ∞. In this case,
system (A.10) with resetting condition (A.11) can be reduced to the following limiting
system:
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494 ZHENZHEN CHEN, SZE-BI HSU, AND YA-TANG YANG
dvN
dt = gN (S(0) − vN )fN (P )vN for Tn−1 < t < Tn,
dP
dt = −hN (P )vN for Tn−1 < t < Tn,
vN (T+

n ) = dvN (T−n ) for t = Tn,
P (T+

n ) = dP (T−n ) + (1− d)P (0) for t = Tn,

(A.20)

where n = 1, 2, 3, . . . . We will first study the existence of positive fixed points of
system (A.20), then analyze the stability of the positive fixed point.

It is easy to check that system (A.20) is a competitive system; then by Lemma
2.2 in [15], we have the following result. For any initial value ((vN )0, P0) ∈ R2

+, the
sequence of point Qn((vN )0, P0) converges to a fixed point of Q as n→∞. Without
loss of generality, we denote this fixed point as (v̄N , P̄ ). Since (vN )n > dU for n large,
we have v̄N > 0 and P̄ > 0. Therefore, there exists a positive fixed point (v̄N , P̄ ) for
system (A.20), and it satisfies the following conditions.

Remark A.9. If hN (P ) = 0, i.e., the last mutant does not consume inhibitor, then
it is easy to verify that P̄ = P (0) and Pn → P (0) as n → ∞. Then we consider the
limiting system (A.14) from Lemma A.5, and the dynamical behavior of {(vN )n}∞n=1

follows.

Let (vN (t, v̄N ), P (t, P̄ )) be the solutions of system (A.20) with initial value (v̄N , P̄ );
then

dvN (T, v̄N ) = v̄N

and

dP (T, P̄ ) + (1− d)P (0) = P̄ .

Case 3: Oscillation of the limiting system. If d1 < d < d2, we have z̄ <
dU < w̄ in this case. Thus the resetting of P will follow the dilution rule Pn = dPn−1

if (vN )n−1 < dU ; otherwise it will follow the resetting rule Pn = dPn−1 + (1− d)P (0).
Therefore, the inhibitor concentration may oscillate in this case as the system is trying
to maintain constant bacteria density vN through feedback. We also demonstrate it
by numerical simulation in section 4.

Proof of Theorem 3.1. Based on the above analysis, we complete the proof of
Theorem 3.1.

Global dynamics of the morbidostat model with both forward and back-
ward mutations. When there are both forward and backward mutations in the
morbidostat, we have the following lemmas and main results in two cases.

Lemma A.10. If (vj)n → 0 as n→∞ for some j, 0 ≤ j ≤ N, then (vk)n → 0 as
n→∞ for all k 6= j, and 0 ≤ k ≤ N. This result indicates that wild type and all the
mutants will go to extinction if any one of them go to extinction in the long term.

Theorem A.11. For the morbidostat model with both forward and backward mu-
tations (3.2) with resetting conditions (3.3), and A is the (N + 1) × (N + 1) matrix
in (A.29), we have the following:

(i) If the spectral radius r(d exp (AT )) < 1, then (Sn, un, (v)n, Pn) → E0 as
n→∞, where E0 = (S(0), 0, 0, . . . , 0) . In this case, the wild type and all the
mutants go extinct in the long term.

(ii) If the spectral radius r(d exp (AT )) > 1, then the system (3.2) with resetting
conditions (3.3) is persistent. In this case, all the species coexist in the mor-
bidostat in the long term. Furthermore, the last mutant vN dominates the
rest of the other species if the backward mutation rates are sufficiently small.
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When all the species coexist in the morbidostat, we study the density of the cells
by studying two comparison systems. Let µ(t) = u(t) + v1(t) + v2(t) + · · · + vN (t);
then for the cells in the morbidostat, we have{

dµ
dt = g0(S)f0(P )u+

∑N
i=1 gi(S)fi(P )vi for Tn−1 < t < Tn,

µ(T+
n ) = dµ(T−n ) for t = Tn.

(A.21)

To study the limiting system (A.21), by hypothesis (2.3) we introduce two com-
parison systems of it. The first comparison system is (A.12), which is the same one
as in Appendix A. The second comparison system takes the form of{

dκ
dt = g0(S(0) − κ)f0(P (0))κ for Tn−1 < t < Tn,
κ(T+

n ) = dκ(T−n ) for t = Tn.
(A.22)

We denote κ(t) as the solution of problem (A.22) and κn = κ(T+
n ) as the population

density right after the nth dilution cycle. Define map Q3 by Q3(κ0) = κ1 = dκ(T, κ0).
For system (A.22), we have a similar result as the comparison systems (A.12) and
(A.14). The postdilution density sequence κn converges to a fixed point, κn → κ̄,
where Q3(κ̄) = κ̄. This fixed point may or may not be the trivial fixed point κ̄ = 0.
And the stability of the fixed point can be given by the following lemma.

Lemma A.12. For system (A.22), we have the following two results:
(i) If 0 < d < exp

(
−g0

(
S(0)

)
f0

(
P (0)

)
T
)
, then the extinction fixed point κ̄ = 0

is globally attracting.
(ii) If exp

(
−g0

(
S(0)

)
f0

(
P (0)

)
T
)
< d < 1, then there is a unique positive fixed

point κ̄ > 0 satisfying Q3(κ̄) = κ̄ and it attracts all positive initial data; in
other words, Q3(κn) → κ̄ > 0 for all κ(0) ∈

(
0, S(0)

)
. Furthermore, at the

fixed point we have d exp (
∫ T

0
g0(S(0) − κ(t, κ̄))f0(P (0))dt) = 1.

It follows that
κn < µn ≤ wn.

Therefore, we have κ̄ ≤ µn ≤ w̄ for n sufficiently large.
For the fixed points of system (A.12) and (A.22) w̄ = w̄(d), κ̄ = κ̄(d), we have the

following results.

Lemma A.13. Let U < S(0):
(i) w̄(d) and κ̄(d) satisfy w̄(1) = κ̄(1) = S(0), w̄(d∗w) = κ̄(d∗κ) = 0, where d∗w =

exp{−gN (S(0))T}, d∗κ = exp{−g0(S(0))f0(P (0))T}, and hence d∗w < d∗κ.

(ii) Both w̄(d)
d and κ̄(d)

d are strictly increasing in d.

(iii) There exist 0 < d̂1 < d̂2 < 1 such that w̄(d̂1)

d̂1
= U and κ̄(d̂2)

d̂2
= U .

The proof of Lemma A.13 is similar to the proof of Lemma A.6; therefore we omit
the details of the proof here.

Remark A.14. From the basic assumption (2.3), comparing (A.14) with (A.22)

yields that d2 < d̂2. When d > d̂2, we have dU < κ̄ < w̄. Thus wn > dU for all
large n. It implies that the inhibitor P will be pumped into the morbidostat in every
dilution cycle in this case.

Proof of Lemma A.10.

Proof. We may assume 0 < j < N , and the proofs for the cases with j = 0 or
j = N are the same as that for 0 < j < N. Since (vj)n → 0 as n → ∞, then for any
ε > 0, there exists Nj > 0 such that 0 < (vj)n < ε for n ≥ Nj . From Lemma A.2
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S(t) ≥ δ > 0, 0 < P (t) < P (0) for all t > 0; then gj(S(t))fj(P (t)) − (q̃j+1 + qj) > 0
for t ∈ [T+

n , Tn+1], where qi and q̃i are sufficiently small for 0 ≤ i ≤ N.
We have

dvj
dt

= (gj(S)fj(P )− (q̃j−1 + qj))vj + (qj−1vj−1 + q̃jvj+1) > 0,(A.23)

for t ∈ [T+
n , Tn+1], and vj(T

+
n ) = (vj)n, vj(Tn+1) = 1

d (vj)n+1.
From (A.23) it follows that vj(t) is strictly increasing on [T+

n , Tn+1] and 0 <
vj(t) <

1
d (vj)n+1 <

1
dε for t ∈ [T+

n , Tn+1] and n ≥ Nj . From (A.23), we have

d2vj
dt2

= (gj(S)fj(P )− (q̃j−1 + qj))v
′
j + (g′j(S)S′fj(P ) + gj(S)f ′j(P )P ′)vj

+(qj−1v
′
j−1 + q̃jv

′
j+1).

It is easy to verify that from the equations of (3.2) and Lemma A.1, we have

|S′| ≤
(

max
δ≤S≤S(0),0≤P<P (0)

{fN (P )gN (S)}
)
S(0)

and

|v′j−1|, |v′j |, |v′j+1| ≤
(

max
δ≤S≤S(0),0≤P<P (0)

{fN (P )gN (S)}+ max
0≤i≤N

{q̃i−1 + qi}
)
S(0).

Since |gj(S)fj(P )| ≤
(
maxδ≤S≤S(0),0≤P<P (0){fN (P )gN (S)}

)
, and f ′j(P ) < 0, we have

|d
2vj
dt2 | ≤ Mj for some Mj > 0. Let |dvjdt | take its maximum in [T+

n , Tn+1] at t = ξ. If
Tn < ξ < Tn+1, then we choose a, b such that a ≤ ξ ≤ b, (a, b) ⊂ (Tn, Tn+1), and
b− a =

√
ε. By the arguments in [15],

vj(b)− vj(ξ) = (b− ξ)v′j(ξ) +
1

2
(b− ξ)2v′′j (η1),(A.24)

vj(a)− vj(ξ) = (a− ξ)v′j(ξ) +
1

2
(a− ξ)2v′′j (η2),(A.25)

where a < η2 < ξ < η1 < b.
Subtracting (A.25) from (A.24), we get

vj(b)− vj(a)− (b− a)v′j(ξ) =
1

2
[v′′j (η1)(b− ξ)2 − v′′j (η2)(a− ξ)2].

Since (b− ξ)2 + (a− ξ)2 ≤ (b− a)2, a ≤ ξ ≤ b, it follows that |v′j(ξ)| ≤
|vj(b)|+|vj(a)|

b−a +

1
2Mj(b− a) ≤

2
d ε√
ε

+
Mj

2

√
ε =
√
ε( 2
d +

Mj

2 ).

Hence on [T+
n , Tn+1], from (A.23),

√
ε( 2
d +

Mj

2 ) ≥ (gj(S)fj(P )− (q̃j−1 + qj))vj +
qj−1vj−1 + q̃jvj+1 ≥ O(1)ε + qj−1vj−1 + q̃jvj+1. Therefore, when t = Tn+1, we have
qj−1

1
d (vj−1)n+1 + q̃j

1
d (vj+1)n+1 ≤ O(1)

√
ε for n ≥ Nj . Hence, we have (vj−1)n,

(vj+1)n → 0 as n→∞.
If ξ = nT or (n + 1)T , then we consider (A.25) with ξ = a, b − a =

√
ε or

ξ = b, b − a =
√
ε, respectively. Following the same procedure we are able to prove

(vj−1)n, (vj+1)n → 0 as n→∞. That completes our proof.
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Proof of Theorem A.11.

Proof. (i) Compare the model (3.2) with resetting conditions (3.3) with the fol-
lowing system (A.26) with resetting conditions (3.3):

dS
dt = 0,
du
dt = g0(S)u− q0u+ q̃0v1,
dvi
dt = gi(S)vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S)vN + qN−1vN−1 − q̃N−1vN ,
dP
dt = 0.

(A.26)

By letting X = (S, u, v1, . . . , vN , P ), we write (3.2) as dX
dt = F (X) and (A.26) as

dX
dt = G(X). It is obvious that F (X) ≤ G(X). Note that (A.26) is a cooperative

system; by Kamke’s theorem, we have

(Sn, un, (v)n, Pn) ≤ (Ŝn, ûn, (v̂)n, P̂n),(A.27)

where (Ŝn, ûn, (v̂)n, P̂n) = Q̂(n)(Ŝ0, û0, (v̂)0, P̂0), and (Ŝ0, û0, (v̂)0, P̂0) = (S0, u0,
(v)0, P0). Consider the extinction fixed point (S(0), 0, 0, . . . , 0, 0) of the system (A.26)
with resetting conditions (3.3); we have ŜN → S(0) as n → ∞. Then we study the
limiting system of the cooperative system (A.26) with resetting conditions (3.3),

du
dt = g0(S(0))u− q0u+ q̃0v1,
dvi
dt = gi(S

(0))vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S(0))vN + qN−1vN−1 − q̃N−1vN .

(A.28)

Let x = (u, v1, . . . , vN ); then (A.28) can be written as

dx

dt
= Ax,

where

A =


A11 q̃0 0 0 0 · · · 0
q0 A22 q̃1 0 0 · · · 0
0 q1 A33 q̃2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 0 qN−1 AN+1N+1

 ,(A.29)

Aii = gi−1(S(0))−(q̃i−2+qi−1) for i = 2, 3, . . . , N, A11 = g0(S0)−q0, and AN+1N+1 =
gN (S0)− q̃N−1. Since the mutation rates qi and q̃i are small for 0 ≤ i ≤ N , q̃i−1 +qi <
gi(S

(0)) for all 1 ≤ i ≤ N . Then from the map induced by (A.28) and (3.3),

Q̃~x0 = d exp (AT )~x0,

it follows that
~xn = Q̃n~x0 = (d exp (AT ))n~x0.

Since A is a positive matrix, if the spectral radius r(d exp (AT )) is less than 1, then
~xn → 0 as n→∞, or (ûn, (v̂)N )→ (0, 0, . . . , 0) as n→∞. In this case, by (A.27) we
have (un, (v)N )→ (0, 0, . . . , 0) as n→∞.

(ii) We will prove the persistence of models (3.2) and (3.3) in the following two
cases.
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Case 1. If u(Tn+1) +
∑N
i=1 vi(Tn+1) < U for all n, then Pn → 0 as n →

∞. Since the matrix d exp (AT ) is a positive irreducible matrix, the spectral ra-
dius r(d exp (AT )) > 1 is an eigenvalue with positive eigenvalue ~w. Since E0 =
(S(0), 0, 0, . . . , 0) ∈ RN+2 is the only fixed point on the boundary ∂RN+2, we can
verify W s(E0) ∩ Int(RN+2) = ∅. Hence the system (3.2) and (3.3) is persistent.

Case 2. If u(Tn+1) +
∑N
i=1 vi(Tn+1) ≥ U for some n > 0. Then the iterates

(Sn, un, (vi)n, pn) may iterate about the boundary u +
∑N
i=1 vi = U . From Lemma

A.10, we know that either (vi)n → 0 as n → ∞ for all 0 ≤ i ≤ N or (vi)n 9 0 as
n→∞ for all 0 ≤ i ≤ N . Thus if r(d exp (AT )) > 1, the system (3.2) with resetting
conditions (3.3) is persistent.

We will next prove that the last mutant vN dominates the other populations
if the backward mutation rates are sufficiently small. Let (S̃n, ũn, (ṽ)n, P̃n) be the
solution of system (3.1) with resetting conditions (3.3). From Lemma A.3, ũn +∑N−1
i=1 (ṽi)n → 0 as n → ∞. Hence given ε > 0, there exists n0 > 0 such that

0 < ũn +
∑N−1
i=1 (ṽi)n < ε for all n ≥ n0. Consider the fixed interval [n0T, 2n0T ] and

the solution (Sn, un, (v)n, Pn) of the system (3.2) with resetting conditions (3.3). From
continuous dependence properties on parameters [16], it follows that if the backward
mutation rates q̃0, q̃1, . . . , q̃N−1 are sufficiently close to 0, then |(Sn, un, (v)n, Pn) −
(S̃n, ũn, (ṽ)n, P̃n)| < ε for all n ∈ [n0, 2n0]. It implies that 0 < un +

∑N−1
i=1 (vi)n < 2ε

for n ∈ [n0, 2n0]. Since all the species u, v1, . . . , vN coexist in the morbidostat, we

have that the last mutant vN dominates the population u+
∑N−1
i=1 vi. That completes

our proof.

Proof of Theorem 3.5. By Theorem A.11, Lemma A.12, Lemma A.13, and
Remark A.14, we complete the proof of Theorem 3.5.
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