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Abstract

In this paper, we study the small-sample statistical condition estimation of the rational Riccati equation, which
may be incorporated into a direct solver applying the homotopy method. Our proposed condition estimation
algorithms are efficient for small and medium size rational Riccati equations. Numerical examples illustrate the
reliability of the algorithms.

Keywords:
Small sample, statistical condition estimation, rational Riccati equations, Fréchet derivative.

1. Introduction

Consider the continuous-time rational Riccati equations (CRREs) arising in the stochastic optimal control of
linear time-invariant (LTI) systems [1, 24] with stochastic components. For the numerical solution of CRREs, a
Newton-type method is considered in [7, 6]. We propose the homotopy method for CRREs by solving generalized
Lyapunov equations and avoid a difficult initial stabilization step [28]. The perturbation analysis and condition
number for CRREs are given in [4, 5], but the corresponding computation is impractical for real problems. So
we investigate the small-sample statistical condition estimation (SCE) for CRREs, adapting the idea of the SCE in
control [18].

The SCE, proposed by Kenny and Laub [19], is a reliable method to estimate the condition numbers. Recently,
the SCE has been widely used in many problems, such as linear equations [21], linear least squares problems
[2, 20], eigenvalue problems [23], (generalized) Sylvester equations [9, 12], roots of polynomials [22], structured
Tikhonov regularization problem [10], the large scale generalized eigenvalues problem [27], generalized spec-
tral projections and matrix sign functions [26], total least squares problem [11] and symmetric algebraic Riccati
equations [8].

In this paper, E denotes the expectation operator and P the probability. The operator vec stacks the columns
of a matrix, with the inverse operator unvec. The 2- and F-norms are denoted respectively by ∥ · ∥ and ∥ · ∥F , and
In is the identity matrix of size n× n.

2. Rational Riccati Equation and Its Perturbation

Consider the control system with state x and control u governed by the Itô differential equation [6, 14, 15]:

dx(t) = Ax(t)dt+Bu(t)dt+ [A0x(t) +B0u(t)] dω0(t), x(0) = x0, (2.1)
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with the stochastic terms {ω0(t)}t∈R+ being independent zero mean real Wiener processes, and the output y(t) =
Cx(t) +Du(t). Here A, A0 ∈ Rn×n, B, B0 ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m.

For the stabilization of (2.1), we may choose u to minimize the quadratic cost:

J (x0, u) ≡ E
∫ ∞

0

[
x
u

]⊤
T

[
x
u

]
dt, T ≡

[
Q L
L⊤ R

]
≥ 0,

where T ≥ 0 (i.e., positive semi-definite or psd), as well as Q = C⊤C ≥ 0 and R > 0 (positive definite). This
gives rise to the continuous-time rational Riccati equation (CRRE):

C(X) ≡ A⊤X +XA+Q+Π1(X)− S(X)R(X)−1S(X)⊤ = 0, (2.2)

with R(X) ≡ R+Π2(X) > 0, S(X) ≡ L+XB +Π12(X) and the linear operator

Π(X) ≡
[

Π1(X) Π12(X)
Π12(X)⊤ Π2(X)

]
≡

[
A⊤

0 XA0 A⊤
0 XB0

B⊤
0 XA0 B⊤

0 XB0

]
.

The operator Π is positive as it satisfies Π(X) ≥ 0 for X ≥ 0. The optimal control is

u = −F (X)x, F (X) ≡ R(X)−1S(X)⊤ = [R+Π2(X)]−1 [L+XB +Π12(X)]⊤ ,

with X being the maximal stabilizing solution of the CRRE (2.2). (Without loss of generality and for a simpler
exposition, we include only one stochastic terms with one Wiener process ω0; more terms in (2.1) only make Π
in (2.2) a slightly more complicated expression with the same properties. We also assume R to be nonsingular,
avoiding the generalized inverse for R(X) in (2.2). We leave the general case for the future.)

In CRRE (2.2), it is convenient to write R = S⊤S > 0 for nonsingular matrix S = R1/2. According to the
condition measure in [18], the sensitivity of the solution of (2.2) to perturbations in S and C other than R and Q
may be interesting. Also, perturbations may be limited by the psd structure of R and Q. Finally, the sensitivity of
X with respect to perturbations of some underlying parameter set may be important.

Substitute R = S⊤S in (2.2), we have

S(X)R(X)−1S(X)⊤ = (L+XB +A⊤
0 XB0)(S

⊤S +B⊤
0 XB0)

−1(L+XB +A⊤
0 XB0)

⊤

=(L+XB +A⊤
0 XB0)

[
S⊤(Im + S−⊤B⊤

0 XB0S
−1)S

]−1
(L+XB +A⊤

0 XB0)
⊤

=(LS−1 +XBS−1 +A⊤
0 XB0S

−1)(Im + S−⊤B⊤
0 XB0S

−1)−1(LS−1 +XBS−1 +A⊤
0 XB0S

−1)⊤,

here B, B0 and L are replaced by BS−1, B0S
−1 and LS−1, respectively, and the following condition is still satisfied[

Q LS−1

S−⊤L⊤ I

]
=

[
I

S−⊤

]
T

[
I

S−1

]
≥ 0.

Without loss of generality, we consider the case when R = Im and Q = C⊤C ≥ 0, i.e., the rational Riccati equation

A⊤X +XA+ C⊤C +A⊤
0 XA0

− (L+XB +A⊤
0 XB0)(Im +B⊤

0 XB0)
−1(L+XB +A⊤

0 XB0)
⊤ = 0,

(2.3)

with Im +B⊤
0 XB0 > 0.

Suppose we introduce perturbations δ∆A, δ∆B, δ∆A0, δ∆B0, δ∆L, δ∆C to the data matrices A, B, A0, B0,
L, C respectively, the solution of the perturbed problem is X + δ∆X and δ is a small positive number, then the
perturbed CRRE of (2.3) is

(A+ δ∆A)⊤(X + δ∆X) + (X + δ∆X)(A+ δ∆A) + (C + δ∆C)⊤(C + δ∆C)

+ (A0 + δ∆A0)
⊤(X + δ∆X)(A0 + δ∆A0)

−
[
(L+ δ∆L) + (X + δ∆X)(B + δ∆B) + (A0 + δ∆A0)

⊤(X + δ∆X)(B0 + δ∆B0)
]

[
Im + (B0 + δ∆B0)

⊤(X + δ∆X)(B0 + δ∆B0)
]−1

[
(L+ δ∆L) + (X + δ∆X)(B + δ∆B) + (A0 + δ∆A0)

⊤(X + δ∆X)(B0 + δ∆B0)
]⊤

= 0.

(2.4)
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Dropping the second- and higher-order terms in (2.4), we obtain an equation in ∆X :

Φ⊤∆X +∆XΦ+Ψ⊤∆XΨ

≈ −(∆C⊤C + C⊤∆C)− (∆A−∆BF )⊤X −X(∆A−∆BF )− (∆A0 −∆B0F )⊤XΨ

−Ψ⊤X(∆A0 −∆B0F ) + ∆LF + F⊤∆L⊤,

(2.5)

where X is the exact solution of CRRE (2.3), F =
[
Im +B⊤

0 XB0

]−1 [
L+XB +A⊤

0 XB0

]⊤, Φ = A − BF and
Ψ = A0 − B0F . It is a generalized Lyapunov equation in ∆X . Applying the operator vec to both sides of the
above equation by the identity vec(UVW ) = (W⊤ ⊗ U)vec(V ), we obtain

Zvec(∆X) ≈ −[(X ⊗ In)Υ + In ⊗X]vec(∆A) + [(X ⊗ F⊤)Υ + F⊤ ⊗X]vec(∆B)

− [((Ψ⊤X)⊗ In)Υ + In ⊗ (Ψ⊤X)]vec(∆A0) + [((Ψ⊤X)⊗ F⊤)Υ + F⊤ ⊗ (Ψ⊤X)]vec(∆B0)

+ [F⊤ ⊗ In + (In ⊗ F⊤)Υ]vec(∆L)− [(C⊤ ⊗ In) + (In ⊗ C⊤)Υ]vec(∆C⊤)

=
{
−[(X ⊗ In)Υ + In ⊗X], [(X ⊗ F⊤)Υ + F⊤ ⊗X],

− [((Ψ⊤X)⊗ In)Υ + In ⊗ (Ψ⊤X)], [((Ψ⊤X)⊗ F⊤)Υ + F⊤ ⊗ (Ψ⊤X)],

[F⊤ ⊗ In + (In ⊗ F⊤)Υ],−[(C⊤ ⊗ In) + (In ⊗ C⊤)Υ]
}

× [vec(∆A)⊤,vec(∆B)⊤,vec(∆A0)
⊤,vec(∆B0)

⊤,vec(∆L)⊤,vec(∆C⊤)⊤]⊤,

≡ S2vec([∆A,∆B,∆A0,∆B0,∆L,∆C⊤]),

(2.6)

where Z = In ⊗ Φ⊤ + Φ⊤ ⊗ In + Ψ⊤ ⊗ Ψ⊤, S2 is a matrix of size n2 × p (with p ≡ n(2n + 3m + l)) and Υ is a
permutation matrix given by Υ =

∑
i,j Eij ⊗ Eji, Eij = eie

⊤
j , ei is the ith column of In and vec(A⊤) = Υvec(A).

By the definition of absolute condition number [16, 25, 29], κ(X) = lim
ϵ→0

sup∆≤ϵ ∥∆X∥F /ϵ, with

∆ =
∥∥[∆A,∆B,∆A0,∆B0,∆L,∆C⊤]∥∥

F
, we get from (2.6) that

κ(X) ≈ ∥Z−1S2∥F . (2.7)

As shown in [20], we consider the componentwise condition numbers of X . The exact value of the condition
number for the i-th component of vec(X) is

κi(X) ≈ ∥e⊤i Z−1S2∥, i = 1, . . . , n2, (2.8)

where ei is the i-th column of In2 .
The perturbation analysis of the rational (stochastic) Riccati equation has also been given in [4, 5], while we

further exploit the psd structure in the perturbation of Q. The condition numbers κ(X) and κi(X) above, as well
as the residual bounds in [4] and the condition numbers in [5] are all difficult to compute, especially for the large-
scale problem, because of the large matrices from the Kronecker products. We adapt the SCE for the condition
estimation.

3. Small Sample Statistical Condition Estimation

The ideas behind the SCE are well illustrated for functions f : Rp → R [18]. Assume that f is at least
twice continuously differentiable. Local sensitivity can be measured by the norm of the gradient of f , ∇f(x) =

(∂f(x)∂x1
, . . . , ∂f(x)∂xp

). By Taylor expansion of f at a point x ∈ Rp along d, we have f(x+δd) = f(x)+δ∇f(x)d+O(δ2),
where δ is a small positive number and d ∈ Rp has unit 2-norm. Then we get the inequality |f(x + δd) −
f(x)| ≤ δ∥∇f(x)∥ up to first order in δ. This inequality points to the real utility of the local condition number
∥∇f(x)∥, measuring the local sensitivity of f appropriately. In order to estimate the norm of ∥∇f(x)∥, the quotient
|(f(x+ δd)− f(x))/δ| can be used to approximate the inner product ∇f(x)d between the gradient and the vector
d. If d is selected uniformly and randomly from the unit p-sphere Sp−1, i.e., d ∈ U(Sp−1), then it is known (see
discussion in [19]) that

E(|∇f(x)d|) = ωp∥∇f(x)∥.
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where the Wallis factor ωp is defined by ω1 = 1, ω2 =
π
2 , and for p > 2,

ωp =


1 · 3 · · · (p− 2)

2 · 4 · · · (p− 1)
, for p odd,

2

π

2 · 4 · · · (p− 1)

1 · 3 · · · (p− 2)
, for p even,

(3.1)

and the Wallis factor can be accurately approximated [19] by

ωp ≈
√

2

π(p− 1
2)
. (3.2)

It is shown in [19] that the condition estimator ν ≡ |∇f(x)d|/ωp satisfies P(∥∇f(x)∥/γ ≤ ν ≤ γ∥∇f(x)∥) ≥
1− 2

πγ +O( 1
γ2 ), for γ > 1.

To improve the estimation procedure, we select d̄1, d̄2, ..., d̄k ∈ N (0, 1) and then use a QR decomposition to
produce an orthonormal basis {d1, d2, . . . , dk} for their span S , which is uniformly and randomly selected from
the space of all k-dimensional subspaces of Rp [19]. Then the expected value of the norm of the projection of
∇f(x) onto S is given by

E
(√

|∇f(x)d1|2 + |∇f(x)d2|2 + · · ·++|∇f(x)dk|2
)
=

ωp

ωk
∥∇f(x)∥2, (3.3)

where ωp and ωk are Wallis factors with orders p and k, respectively. Then we get the subspace condition estimator

ν(k) =
ωk

ωp

√
|∇f(x)d1|2 + |∇f(x)d2|2 + · · ·++|∇f(x)dk|2 (3.4)

has expected value ∥∇f(x)∥2. According to Theorem 3.3 of [19],

P
(
∥∇f(x)∥

γ
≤ ν(2) ≤ γ∥∇f(x)∥

)
≈ 1− π

4γ2
,

P
(
∥∇f(x)∥

γ
≤ ν(3) ≤ γ∥∇f(x)∥

)
≈ 1− 32

3π2γ3
,

P
(
∥∇f(x)∥

γ
≤ ν(4) ≤ γ∥∇f(x)∥

)
≈ 1− 81π2

512γ4
.

(3.5)

These estimates are generally very accurate for γ ≥ 10. This is the subspace statistical method and can give
sharper estimates.

The function f may be scalar valued, but we can easily extend the SCE to twice continuously differentiable
vector and matrix-valued functions. By using the vec operator [17], which maps matrices into vectors by stacking
the columns, the set of vector-valued functions can be viewed as a map from Rp to Rq including the class of
functions that map matrices into matrices [19]. Then the Taylor expansion about x ∈ Rp has the form

f(x+ δd) = f(x) + δ∇f(x)d+O(δ2), (3.6)

where ∇f(x) is a matrix of size q × p and d has unit norm. The sensitivity of f at x is measured by ∥∇f(x)∥
to bound the perturbations in f and ∥∇f(x)∥ is estimated by power method [25]. To be more precise, we can
consider separately the sensitivity of every entry of f to the perturbations, especially since this entails no greater
computational effort [19]. To be concrete,

fi(x+ δd) = fi(x) + δ∇fi(x)d+O(δ2), i = 1, . . . , q,

where fi is the i-th entry of f and ∇fi, the gradient of the scalar function fi, is the i-the row of ∇f(x). Then ∥∇fi∥
can be estimated for i = 1, . . . , q by the theory of scalar functions. Furthermore, ∥∇f∥F can be estimated.

From the point of view of Fréchet derivative, to measure the perturbations of the data matrices A, B, A0, B0,
L and C⊤ (of the same dimension) in (2.3), we consider the mapping g : Rp → Rn2

with

vec(A,B,A0, B0, L, C
⊤) 7→ g(A,B,A0, B0, L, C

⊤) ≡ vec(X),
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where g is differentiable in a neighborhood of (A,B,A0, B0, L, C
⊤). Then we have the matrix M∇g represent-

ing the Fréchet derivative ∇g(A,B,A0, B0, L, C
⊤) on the direction d ≡ vec(∆A,∆B,∆A0,∆B0,∆L,∆C⊤) and

satisfies
vec(∆X) ≈ M∇gd

with M∇g = Z−1S2 from (2.6). Then the absolute condition number (2.7) and the componentwise condition
number (2.8) can be estimated by the SCE theory.

If d ≡ vec[∆A,∆B,∆A0,∆B0,∆L,∆C⊤] are selected uniformly and randomly from the unit p-sphere Sp−1,
we get the solution ∆X by solving the generalized Lyapunov equation (2.5) and obtain the condition estimator
|M∇gd|/ωp. Then the norm of i-th row of M∇g, i.e., the componentwise condition number κi(X) is estimat-
ed by the i-th entry of |vec(∆X)|/ωp; ∥M∇g∥F , i.e., the absolute condition number κ(X) can be approximated
by ∥∆X∥F /ωp. This is one sample condition estimation. For the subspace condition estimation, we state it in
Algorithm 3.1 in detail.

Algorithm 3.1 (Subspace condition estimation for the solution X to CRRE (2.3)).

1. Generate (A(i), B(i), A
(i)
0 , B

(i)
0 , L(i), C(i)), i = 1, . . . , k with entries in N (0, 1) and orthonormalize them. That is,

with the QR factorization of the matrix vec(A
(1)) · · · vec(A(k))

...
...

vec(C(1)) · · · vec(C(k))

 ,

we get the the orthonormal matrix
[
q1 · · · qk

]
and then convert each qi back to the matrix (A(i), B(i), A

(i)
0 , B

(i)
0 , L(i), C(i))

i = 1, . . . , k by the ”unvec” operation. Here A(i), A
(i)
0 ∈ Rn×n, B(i), B

(i)
0 , L(i) ∈ Rn×m and C(i) ∈ Rl×n.

2. Let p = (2n+ 3m+ l)n. Approximate ωp and ωk using (3.2).

3. For i = 1, ...k, solve the generalized Lyapunov equation (2.5) to get the solution Yi = ∆X with the matrix
(∆A,∆B,∆A0,∆B0,∆L,∆C⊤) = (A(i), B(i), A

(i)
0 , B

(i)
0 , L(i), C(i)⊤).

4. Obtain the componentwise condition matrix

K =
ωk

ωp

√
|Y1|2 + · · ·+ |Yk|2,

then κi(X) is estimated by the i-th entry of vec(K) and κ(X) can be approximated by ∥K∥F .

Similarly, for the relative condition number κR(X) = lim
ϵ→0

sup∆≤ϵ ∥∆X∥F /(ϵ∥X∥F ), with

∆ =
∥∥∥[ ∆A

∥A∥F ,
∆B
∥B∥F ,

∆A0
∥A0∥F ,

∆B0
∥B0∥F ,

∆L
∥L∥F ,

∆C⊤

∥C∥F

]∥∥∥
F

, we get from (2.6) that the relative condition number and compo-
nentwise relative condition number are

κR(X) ≈ ∥Z−1S2D1∥F
∥X∥F

, κRi (X) ≈

{∥e⊤i Z−1S2D2∥F
|vec(X)|i , if |vec(X)|i ̸= 0

∥e⊤i Z−1S2D2∥F , if|vec(X)|i = 0
, i = 1, . . . , n2;

D1 = diag{∥A∥F In2 , · · · , ∥C∥F Inl}, D2 = diag{|vec(A)|, · · · , |vec(C⊤)|}.

(3.7)

To relate this to the SCE technique, δDid (i = 1, 2) instead of δd describe the perturbations in (3.6), respectively,
for d a unit-norm vector. In detail, for the relative condition number estimation, we convert each D1qi back to the
matrix (A(i), B(i), A

(i)
0 , B

(i)
0 , L(i), C(i)) i = 1, . . . , k by the ”unvec” operation in step 1 in Algorithm 3.1 and κ(X) can

be approximated by ∥K∥F /∥X∥F in step 4; for the componentwise relative condition number estimation, we convert
each D2qi back to the matrix (A(i), B(i), A

(i)
0 , B

(i)
0 , L(i), C(i)) i = 1, . . . , k by the ”unvec” operation in step 1 and κi(X)

is estimated by the i-th entry of vec(K) divided componentwise by |vec(X)|, leaving entries of vec(K) corresponding to zero
entries of |vec(X)| unchanged in step 4. The remaining steps in the algorithm are unchanged.

In practice, the exact Fréchet derivative cannot be obtained without the exact solution X . However, condition
estimations usually need to be within only an order of magnitude, and this level of accuracy is attainable by an
approximate solution [11].
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Componentwise Normwise
Absolute Exact 5.4745 3.4747 3.4747 3.8951 8.3240

Absolute Estimated 5.4724 3.5270 3.5270 3.9842 8.5179
Relative Exact 1.5248 1.3927 1.3927 1.3997 2.9537

Relative Estimated 1.5507 1.4121 1.4121 1.4147 3.0541

Table 1: Componentwise and normwise condition estimations compared with the exact absolute and relative condition numbers.

4. Numerical Examples

We present two examples to test the feasibility of the SCE for rational Riccati equations. The homotopy
method is adopted for solving the rational Riccati equation to get an accurate approximate solution [28]. The
core parts of the SCE as well as the homotopy method are solving the generalized Lyapunov equations [13]. All
the examples have been attempted using MATLAB Ver. R2015b on a HUAWEI MateBook X Pro with an Intel
Core i7 8550U CPU at 1.80GHz 1.99GHz and 16 GB.

Example 4.1. Consider an example from [3, Example 1] to test the effects of the SCE, with the matrices

A =

[
0 1
0 0

]
, B =

[
0
1

]
, Q =

[
1

2

]
, L =

[
0
0

]
, A0 =

[
0.1 0.1
0.2 0.2

]
, B0 =

[
0.1
0.1

]
, R = 1.

We generate 1000 samples, then the normwise and componentwise condition estimations are shown in Fig-
ures 1,2 and the mean values of condition estimations are shown in Table 1, compared with the exact ones.

0 200 400 600 800 1000
0

0.5

1

1.5

2
Norm-Abs

(a) norm absolute.

0 200 400 600 800 1000
0

0.5

1

1.5

2
Norm-Rel

(b) norm relative.

Figure 1: Normwise condition estimation.
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0

1

2

3
(1,1)-abs

0 200 400 600 800 1000
0

1

2

3
(2,1)-abs

0 200 400 600 800 1000
0

1

2

3
(1,2)-abs

0 200 400 600 800 1000
0

1

2

3
(2,2)-abs

(a) norm absolute componentwise.

0 200 400 600 800 1000
0

1

2

3
(1,1)-rel

0 200 400 600 800 1000
0

1

2

3
(2,1)-rel

0 200 400 600 800 1000
0

1

2

3
(1,2)-rel

0 200 400 600 800 1000
0

1

2

3
(2,2)-rel

(b) norm relative componentwise.

Figure 2: Componentwise condition estimation.

Example 4.2. The example is from benchmark [3, Example 5] with the matrices A ∈ R9×9, B ∈ R9×3, C ∈ R9×9 and

A0 = 0.1 ∗ I9, B0 =

(
0

0.1 ∗ I3

)
.

In this example, the componentwise condition numbers are much smaller than the normwise ones and may
indicate the problem’s true conditioning, shown in Figure 3.
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0 10 20 30 40 50 60 70 80 90
0
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Absolute componentwise condition numbers

Exact
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(a) Exact:13.4235; Estimated: 14.0384.
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0

50

100

150

200
Relative componentwise condition numbers

Exact
Estimation

(b) Exact:1.0136*1e3; Estimated: 1.0633*1e3.

Figure 3: Componentwise condition estimations show advantage over the normwise ones.

5. Conclusions

In this paper, we present the absolute and relative condition numbers for the rational Riccati equation, ensur-
ing the symmetric positive semi-definition structure in some perturbations. Then we estimate the conditioning
of the rational Riccati equations by the SCE techniques, considering normwise and componentwise perturbation-
s. In numerical experiments, the SCE results agree with the exact values well. Thus the proposed algorithm is
reliable and produce posterior error estimations of high accuracy. For the large scale problem, we can also get
the condition estimations by modifying our algorithm and only need to consider the numerically low-rank and
sparsity structures in solving the generalized Lyapunov equations. This will be our future work.
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