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Calculus on Spaces with Higher Singularities

D.-C. Chang and B.-W. Schulze

Abstract. We establish extensions of the standard pseudo-differential calcu-
lus to specific classes of operators with operator-valued symbols occurring
in symbolic hierarchies motivated by manifolds with higher singularities or
stratified spaces.
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Introduction

Singular analysis is motivated by numerous and partly classical applications of
physics and geometry, cf. [30], [24], [17], [18], see also the bibliographies there.
The main intention of the present article is to give an idea on how algebras of
pseudo-differential operators A can be organized when the underlying manifold
M has singularities such as edges, boundaries or higher corners of some order.
For a manifold with boundary the expectation is formally similar as in Boutet
de Monvel’s calculus, where the singular strata contribute an additional symbolic
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structure, in this case boundary symbols which contribute to ellipticity of boundary
conditions, to parametrices of elliptic elements and to the Fredholm property when
(in simplest cases) M is compact. It is natural to formulate similar structures in
the case of manifolds M ∈Mk with higher singularities of order k ∈ N, i.e., which
are determined by a stratification

s(M) =
(
s0(M), s1(M), . . . , sk(M)

)
consisting of a sequence of smooth subspaces sj(M) for dim sj(M) > dim sj+1(M)
for j = 0, . . . , k − 1. The principal symbolic structure of operators A is given by
sequences of components

σ(A) =
(
σ0(A), σ1(A), . . . , σk(A)

)
.

An example of a singular space is the infinite cone

XM := (R+ ×X)/({0} ×X) ∈M1

for any X ∈ M0; the case k = 0 indicates smoothness. In analysis over XM we
often pass to the corresponding open stretched cone

X∧ := R+ ×X

in a prescribed equivalence class of splitting of variables into (r, x) ∈ R+ × X,
representing regular singularity.

Ellipticity of an operator A over M ∈Mk is defined by some bijectivity conditions
for the components of σ(A). In general, those require operator block matrices
A = (Aij) containing A in the upper left corner, up to Green and Mellin summands
which are produced in compositions and parametrices. Those are related to the
asymptotics of solutions as well as to the structure of extra trace and potential
conditions coming from the lower-dimensional strata of M, see also [12].

This paper is organized as follows: The first Chapter is aimed at developing the
approach for singularities of order k = 1, 2. We discuss a new intrinsic definition
of Kegel spaces and complete the insight on corner pseudo-differential algebras up
to singularity order 2. In addition we suggest a simplified approach into singular
functions of asymptotics which belong to the tools of Green, trace and potential
operators. Note that even the lower order singular analysis contains challenges
and unexpected difficulties. For instance, an analogue of the Atiyah-Singer index
theorem according to the K-theoretic approach of [2] or Boutet de Monvel [4]
on operators with the transmission property seems to be not achieved yet. The
multiplicative behaviour of singular spaces, appearing in Cartesian products MM×
NM ∈ M2 for M, N ∈ M1 is hard to complete by multiplicative properties of
associated operators, say, in terms of Künneth formulas for elliptic complexes.
Edge algebras and numerous structures in the context of boundary value problems
are a special case of corner problems, while cone algebras, are a special case of the
boundary symbolic calculus. Details can be found in Rempel, Schulze [45] ,[53],
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[56] and in a series of joint papers jointly with Chang [8], [9], [10], as well in joint
papers with Liu [35], Wei [61], Seiler [59], Hedayat-Mahmoudi [26].

The second Chapter is devoted to singular analysis of order k ≥ 3. We show that
our approach is iterative under repeatedly forming cones and wedges, starting
with some base of given singularity order. Aspects on operators up to singularity
order 2 have been studied in joint papers with Calvo [6], Maniccia [39], Habal [22],
Rungrottheera and Wong [50]. Higher singular operators have been studied in [57],
[58] and in joint papers of the second author with Calvo and Martin [5], Habal
and Chang [7], Chang and Hedayat-Mahmoudi [11], Lyu [38].

1. Singular Manifolds and Corner-degenerate Differential
Operators

1.1. Corner Manifolds

The underlying corner manifolds M of singularity order k ∈ N, where k = 0
indicates smoothness, are defined as stratified spaces M ∈Mk such that for k > 0
there is an sk(M) ∈ M0, sk(M) ⊆ M, such that M \ sk(M) ∈ Mk−1, and there
is a neighbourhood V ⊆ M of sk(M) which has the structure of a locally trivial
BM
k−1-bundle over sk(M) for a compact Bk−1 ∈ Mk−1 where BM

k−1 := (R+ ×
Bk−1)/({0} ×Bk−1) is the infinite cone with base Bk−1, and the vertex sk(BM

k−1)
which is a single point. Often we briefly say that M is locally close to sk(M)
modeled on BM

k−1 × Rqk for qk := dim sk(M).

Note that X ∈ M0 implies XM ∈ M1, X
M × XM ∈ M2, etc. More generally,

M ∈Mk, Ω ∈M0 implies M × Ω ∈Mk and Ω = sk(M × Ω) = sk(M)× Ω which
is in turn a special case of the rule M ×N ∈Mk+l for M ∈Mk for N ∈Ml. We
set dim M := dim s0(M) for any M × Ω ∈Mk.

For an M ∈ Mk the BM
k−1-bundle over sk(M) represents a neighbourhood of

sk(M) in M. On a manifold M ∈M1 with boundary s1(M) the situation is similar
and quite common when we identify a collar neihgbourhood V of the boundary
with the normal bundle with fibre R+. In the general case, by replacing V by an
R+×Bk−1-bundle then the “bottom” {0}×Bk−1 can be identified with an Bk−1-
bundle which can be invariantly attached to M \sk(M). Let M denote the resulting
space. The double 2M obtained by gluing together two copies of M by identifying
the common subspace sk(M) then belongs to Mk−1. In order to illustrate the
situation we consider the case M = BM for a B ∈ M0. Then BM belongs to M1,
and we have M = R+ ×B, 2B = R×B.
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Remark 1.1. Observe that the strata sj(M) for M ∈Mk are not necessarily closed.
For instance, if M is a disk in C then s0(M) is the open interior, and s1(M) the
boundary. If M ∈Mk is embedded in Rn for some n and compact, then sk(M) is
closed.

For constructions below on compact M ∈ Mk we choose specific partitions of

unity. First there are functions ψk,l, l = 1, . . . , Nk such that
∑Nk
l=1 ψk,l = 1 in a

neighbourhood of sk(M). In addition we find functions ψk−1,l, l = 1, . . . , Nk−1

such that
∑Nk−1

l=1 ψk−1,l = 1 in a neighbourhood of sk−1(M). Moreover, there are

functions ψk−2,l, l = 1, . . . , Nk−2 such that
∑Nk−2

l=1 ψk−2,l = 1 in a neighbourhood
of sk−2(M). This process can be continued such that finally we obtain functions

ψ0,l, l = 1, . . . , N0 such that
∑N0

l=1 ψ0,l = 1 in a neighbourhood of s0(M). We
choose all these functions in a way that they restrict to element in C∞(s0(M)).
For Ψ :=

∑
ψm,l with summation over all m, l we set ϕm,l := ψm,l/Ψ. Then∑

m,l ϕm,l = 1 and
∑Nm
l=1 ϕm,l = 1 in a neighbourhood of sm(M) and the functions

ψm,l form the desired partition of unity.

1.2. Differential Operators and Principal Symbolic Hierarchies

We now have a look at typical differential operators on spaces M ∈ Mk. Let
Diffm(X) for any X ∈M0 be the Fréchet space of all differential operators on X
of order m with smooth coefficients (in any local coordinates). An operator A on
s0(M) for an M ∈Mk, k ≥ 1, is said to be an element in Diffµdeg(M) if in the case

dim sk(M) > 0 it has the form

(1.1) A = r−µ
∑

j+|α|≤µ

ajα(r, y)
(
− r ∂

∂r

)j
(rDy)α

for coefficients ajα(r, y) ∈ C∞(R+×Ω,Diff
µ−(j+|α|)
deg (Bk−1)), and in the case dim sk(M) =

0

(1.2) A = r−µ
µ∑
j=0

aj(r)
(
− r ∂

∂r

)j
for coefficients aj(r) ∈ C∞(R+,Diffµ−jdeg (Bk−1)). Clearly, deg can be omitted for

k − 1 = 0. As in the preceding subsection, M ∈ Mk is locally close to sk(M)
modeled on XM

k−1 × sk(M) and the Fréchet spaces Diffν(Xk−1) are defined by
the iterative step before, where Diffν(X) for X ∈ M0 is the standard space of
differential operators with smooth coefficients. For A given by (1.1) and (1.2) we
set

(1.3) σk(A)(y, η) = r−µ
∑

j+|α|≤µ

ajα(0, y)
(
− r ∂

∂r

)j
(rη)α

and

(1.4) σk(A)(v) =

µ∑
j=0

aj(0)vj ,
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respectively. In (1.3) we assume η 6= 0. In (1.4) v is interpreted as a complex Mellin
covariable, often regarded as an element of

Γλ := {v ∈ C : Re v = λ}
for a suitable real λ, where λ is associated to a corresponding weight. For A ∈
Diffµ(M), B ∈ Diffν(M), M ∈ Mk, and dim sk(M) > 0 we have σk(AB)(y, η) =
σk(A)(y, η)σk(B)(y, η). In the case dim sk(M) = 0 we have σk(AB)(v) = σk(A)(v−
ν)σk(B)(v). For A ∈ Diffµdeg(M), k ≥ 1, we have at the same time A ∈ Diffµdeg(M \
sk(M)). Since M \ sk(M) ∈ Mk−1 we can determine σk−1(A), where we always
have dim sk−1(M) > 0. Thus we get the full principal symbolic hierarchy σ(A).

Example 1. Operators of the form

A := (r1 · · · rk)−µ(r1∂r1)j1(r1r2∂r2)j2 · · · (r1r2 · · · rk∂jkrk )

for j1 + · · ·+ jk = k belong to Diffµdeg (R+×R+× · · ·×R+) over M := R+×R+×
· · · × R+ ∈Mk.

1.3. Operators for Singularities of Lower Order

By singularities of lower order we understand the cases k ≤ 2 which are necessary
for the iterative process. We first look at the case dim (sk(M)) > 0. Basics for
k = 2 are developed in the above-mentioned articles, especially in [26] T.he case
dim (sk(M)) = 0 is a slight modification. The operator-valued symbols (1.4) induce
families of continuous operators between Kegel spaces Ks,γ(X∧)

(1.5) σk(A)(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

for s, γ ∈ R when X ∈ M0 and k = 1 and for s ∈ R, γ = (γ1, γ2) ∈ R2 when
X ∈ M1 and k = 2. In this case we define γ − µ := (γi − µ)i=1,2. While Kegel
spaces for manifolds M ∈M1 with edge are a traditional tool in singular analysis
the definition for X ∈M1 is by no means straightforward. Let us briefly recall some
notions in this context. We systematically employ the weighted Mellin transform
of weight γ ∈ R

Mγu(v) :=

∫ ∞
0

rvu(r′)dr′/r′

first regarded as a continuous map Mγ : rγL2(R+) → L2(Γ1/2−γ) where spaces
on Γλ are interpreted as the standard ones with respect to the real variable Re v
for v ∈ Γλ. We then have weighted Mellin pseudo-differential operators on the r
half-axis

(1.6) OpγM (f)u := M−1
γ,v→rf(r, r′, v)Mγ,r′→vu

for any f(r, r′, v) ∈ Sµ(R+ ×R+ × Γ1/2−γ) in Hörmander’s symbol class, later on
to be generalized to operator-valued symbols, or, equivalently,

(1.7) OpγM (f)u(r) =

∫∫ (
r/r′

)−(1/2−γ+iρ)
f(r, r′, 1/2− γ + iρ)u(r′)dr′/r′d̄ρ

for d̄ρ = (2πi)−1dρ.
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A separable Hilbert space H is said to be endowed with a group action
κ = {κδ}δ∈R+ if κδ : H → H is an isomorphism for every δ, moreover, κδκδ′ = κδδ′

for every δ, δ′ ∈ R+, and h 7→ κδh represents an element f(δ) ∈ C(R+, H) for
every h ∈ H. A Fréchet space E is said to be endowed with a group action κ, if
E = lim←−j∈NE

j is written as a projective limit of Hilbert spaces Ej with continuous

embeddings Ej ↪→ E0 for all j, where E0 is endowed with κ = {κδ}δ∈R+ as well

as all Ej with κδ|Ej for all j.

For two Hilbert spaces H and H̃ with group action κ and κ̃, respectively, Ω ⊆ Rp
open, we have the spaces

Sµ(Ω× Rq;H, H̃)

of operator-valued symbols of order µ ∈ R, consisting of those a(y, η) ∈ C∞(Ω ×
Rq,L(H, H̃)), satisfying the “twisted” symbolic estimates

‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) ≤ c〈η〉

µ−|β|

for all (y, η) ∈ K × Rq,K compact in Ω, all α ∈ Np, β ∈ Nq, for constants c =
c(α, β,K) > 0. A similar definition works for classical symbols with components
of twisted homogeneity µ − j, j ∈ N. Similarly, we form symbol spaces Sµ(Ω ×
Rq;E, Ẽ) for Fréchet spaces E, Ẽ with group action. We tacitly use this material
below and refer to the monographs [53], [56] or [15].

Let H be a separable Hilbert space with group action κ = {κδ}δ∈R+
. Then

Ws(Rq, H) for s ∈ R is defined as the completion of S(Rq, H) with respect to
the norm

(1.8) ‖u‖Ws(Rq,H) =
{∫
〈η〉2s‖κ−1

〈η〉(Fu)(η)‖2H d̄η
}1/2

for d̄η = (2π)−qdη. The definition extends to the case of a smooth manifold Y
rather than Rq, and for non-compact Y we also have “comp”/“ loc”-versions of
such spaces. Another generalization concerns Fréchet spaces E instead of Hilbert
spaces, written as projective limits of Hilbert spaces with group action. We also
employ such generalizations.

Given a Hilbert space H with group action κ = {κδ}δ∈R+ we have local weighted
Mellin Sobolev spaces Hs,γ(R+×Rq, H), defined as completion of C∞0 (R+×Rq, H)
with respect to the norm

(1.9)
{∫

Rq

∫
Γ(b+1)/2−γ

〈v, η〉2s‖κ−1
〈v,η〉Mr→vFy→η(u)(v, η)‖2H d̄vd̄η

}1/2

.

The number b is fixed in connection with extra information from the space H, for
instance, b := n in the case Ks,γ(X∧) for X ∈ M0, n = dimX which is endowed
with the group action

(1.10) (κδu)(r, x) = δ(n+1)/2u(δr, x).
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For q = 0, H = C and κδ = idH , δ ∈ R+, we have the spaces Hs,γ(R+) as well as
Hs,γ(X∧). The latter ones are obtained for X ∈M0, n := b := dimX and H := C
by completing C∞0 (X∧) with respect to the norm

‖u‖Hs,γ(X∧) :=
{ N∑
j=0

‖ϕju ◦ (idR+ × χ−1
j )∗)‖2Hs,γ(R+×Rn)

}1/2

where (U1, . . . , UN ) is a covering of X by coordinate neighbourhoods, (ϕ1, . . . , ϕN )
a subordinate partition of unity, χj : Uj → Rn charts, moreover, (·)∗ indicates the
push forward under the respective diffeomorphism, and idR+

denotes the identity
diffeomorphism on R+. For X ∈ M0 a possible definition of the Kegel space
Ks,γ(X∧) is

(1.11) Ks,γ(X∧) = {ωu+ (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X∧)},

where Hs
cone(X∧) is modeled for r → ∞ on standard Sobolev spaces on Rn+1 of

smoothness s in coordinates x̃ over R+ × U for any coordinate neighbourhood U
on X diffeomorphic to the open unit ball in Rn under the identification R+ ×
U → {cone}, where “cone” indicates a conical subset in Rn+1 \ {0} obtained by
{x̃ = (x̃0, rx̃

′) : x̃0 = r, x̃′ := (x̃1, . . . , x̃n)} for x̃′ in the above-mentioned open
unit ball in Rn. The definition of Ks,γ(X∧) does not depend on the choice of the
cut-off function ω, because of Hs,γ(X∧), Hs

cone(X∧) ⊆ Hs
loc(X∧).

We have

(1.12) K0,0(X∧) = H0,0(X∧) = r−n/2L2(X∧),

and (1.10) is unitary in r−n/2L2(X∧). Moreover, if Kβ(r) is any strictly positive
smooth function on R+ that is equal to 1 for r > ε1 and rβ for 0 < r < ε0 for
some 0 < ε0 < ε1 <∞ then we have the relation

(1.13) Ks,γ(X∧) = KγKs,0(X∧)

where Kγ is regarded as operator of multiplication by the corresponding function.

There is another “intrinsic” definition of Kegel spaces which is apparently more
natural in analogous form for X of higher singular order. We therefore sketch more
tools from the edge calculus of singularity order 1. If X is a smooth closed manifold
of dimension n then Lµ(cl)(X;Rd) means the space of classical or non-classical

(indicated by subscript “(cl)”) parameter-dependent pseudo-differential operators
on X of order µ ∈ R in its natural Fréchet topology. Observe, in particular, that
L−∞(X;Rd) =

⋂
µ∈R L

µ(X;Rd) = S(Rd, L−∞(X)) with L−∞(X) being identified

with C∞(X ×X) via a fixed Riemannian metric on X. Let E be a Fréchet space.
By A(U,E) for an open subset U ⊆ C we denote the space of all holomorphic
functions in U with values in E in the Fréchet topology of uniform convergence
on compact subsets of U.
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Definition 1.2. Let Mµ
O(X;Rd) denote the space of all h(v, ζ) ∈ A(Cv, Lµcl(X;Rdζ))

such that h(λ + iρ, ζ) ∈ Lµcl(X; Γλ × Rdζ) for every λ ∈ R, uniformly in compact
λ-intervals.

The alternative definition of Kegel spaces is due to the following result of the edge
calulus, cf. [49], [38]. We set

(1.14) Mµ
O(X;Rqrη) :=

{
h̃(v, rη) : h̃(v, η̃) ∈Mµ

O(X;Rqη̃)
}
.

Elements of (1.14) are regarded as Mellin symbols, i.e., symbols of Mellin pseudo-
differential operators

OpγM (h)(η)u(r) =

∫ ∫
(r/r′)−(1/2−γ+iρ)h(r, 1/2− γ + iρ, η)u(r′)dr′/r′d̄ρ

for h(r, v, η) ∈ Mµ
O(X;Rqrη), d̄ρ = (2π)−1dρ. The spaces Mµ

O(X;Rdζ) have some

natural properties: First kernel cut-off gives us a continuous map

Lµcl(X; Γλ × Rdζ)→Mµ
O(X;Rdζ).

The assertions of the following theorem are well-known, cf. [53] or [56] and valid in
analogous form for holomorphic symbols in connection with singularities of higher
order.

Theorem 1.3. (i) Let h(v, ζ) ∈ Mµ
O(X;Rdζ), h|Γλ ∈ Lµ−1

cl (X; Γλ × Rdζ) for

some λ. Then h ∈Mµ−1
O (X;Rdζ).

(ii) h(v, ζ) ∈ Mµ
O(X;Rdζ) entails (T βh)(v, ζ) := h(v + β, ζ) ∈ Mµ

O(X;Rdζ) for
every β ∈ R.

(iii) For h(v, ζ) ∈Mµ
O(X;Rdζ) we have (∂vh)(v, ζ) ∈Mµ

O(X;Rdζ).

(iv) For h(v, ζ) ∈Mµ
O(X;Rdζ) and every δ, γ we have OpδM (h)(ζ) = OpγM (h)(ζ)

on functions in C∞0 (R+).

(v) For h(v, ζ) ∈ Mµ
O(X;Rdζ) we have OpγM (h)(ζ)rα = rαOpγM (T−αh)(ζ) for

every α, γ on C∞0 (R+), (T−αh)(v, ζ) = h(v − α, ζ).

It is useful to enrich the space Mµ
O(X;Rqη̃) by an extra parameter ι ∈ Rw for some

w ∈ N by replacing Lµcl(X;Rqη̃) by Lµcl(X;Rwι ×R
q
η̃). Let us denote the corresponding

class by

(1.15) Mµ
O(X;Rwι × Rqrη).

Clearly we have
Mµ
O(X;Rwι × Rqrη) ⊂Mµ

O(X;Rqrη)

for every fixed ι ∈ Rw. Therefore, we often suppress the parameter ι though it
could be added in many relations.
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We need some observations on associated operators, similarly as technique from
Kumano-go’ calculus [33], or of Seiler [66]. Let

f(v, rη) ∈Mµ
O(X;Rwι × Rqrη), g(v, rη) ∈Mν

O(X;Rwι × Rqrη),

and set

(1.16) A := r−µOp
γ−ν−n/2
M (f)(η), B := r−νOp

γ−n/2
M (g)(η)

and form in admitted manner (since f, g are holomorphic in v) the composition

(1.17) AB = r−µOp
γ−ν−n/2
M (f)(η) ◦ r−νOp

γ−n/2
M (g)(η).

Then

(1.18) AB = r−(µ+ν)Op
γ−n/2
M (h#g)

for h(v, rη) = f(v − ν, rη) and

(1.19) h#g ∼
N∑
k=0

1

k!
∂kvh

(
− r∂r

)k
g + rN+1

where the remainder is a Mellin oscillatory integral
(1.20)

rN+1 =

∫ 1

0

(1− θ)N

N !

∫∫
tiτ∂N+1

v h(v + iθτ, rη)
(
− r∂r

)N+1
g(v, trη)

dt

t
d̄τdθ.

We obtain

(1.21) rN+1(v, rη) ∈Mµ+ν−(N+1)
O (X;Rqrη)

and hence

Theorem 1.4. h ∈ Mµ
O(X;Rwι × Rqrη), g ∈ Mν

O(X;Rwι × Rqrη) entails h#g ∈
Mµ+ν
O (X;Rwι × Rqrη).

The following result is known from [66] or [20], but our proof also applies in more
complicated situations below. Since q ∈ N is arbitrary, we also may replace f, g
by

f(r, v, η, ζ), g(r, v, η, ζ) ∈Mµ
O(X;Rq+drη,rζ)

for an additional parameter ζ ∈ Rd for any d ∈ N.

Theorem 1.5. For every µ, γ ∈ R there exists an element fµ(r, v, η) ∈Mµ
O(X;Rqrη)

such that for any sufficiently large |η| the operator

(1.22) r−µOp
γ−n/2
M (fµ)(η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

is an isomorphism for every s ∈ R.

Proof. We choose a parameter-dependent elliptic l̃(ι, ρ, η̃) ∈ Lµcl(X;Rwι ×Γλ×Rqη̃)
and produce via kernel cut-off turning ρ on Γλto the complex variable v an element
f̃(ι, v, η̃) ∈Mµ

O(X;Rwι ×R
q
η̃). Then, setting fµ(r, v, η) := f̃(ι, v, rη) we first see that

(1.22) is an elliptic operator in the cone algebra over X∧ with conormal symbol

(1.23) fµ(ι, v, 0) : Hs(X)→ Hs−µ(X)
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which is an elliptic pseudo-differential operator with parameter (ι, v) ∈ Rwι ×
Γ(n+1)/2−γ and bijective for sufficiently large |ι|. If necessary, we modify the Mellin
symbol vy a translation in the complex v-plane. At the same time (1.22) is an edge
symbol in its dependence on η which is homogeneous in the sense

(1.24) r−µOp
γ−n/2
M (fµ)(δη) = δµκδ

(
r−µOp

γ−n/2
M (fµ)(η)

)
κ−1
δ .

Composing r−µOp
γ−n/2
M (fµ)(η) from the right with rµOp

γ−µ−n/2
M ((fµ)−1)(η) we

can first commute rµ in the middle through the Mellin action, cf. Theorem 1.3
(iv), and then apply the above-mentioned composition result. Then, for sufficiently
large ι, |η| the remainder becomes small and hence we can compute the inverse of

r−µOp
γ−n/2
M (fµ)(η).

Thus, setting R−s(η) := rsOp
γ+s−n/2
M (f−s)(η) for suitable f−s(η) ∈M−sO (X;Rqrη)

we can define

(1.25) Ks,γ(X∧) = R−s(η)K0,γ−s(X∧)

for any |η| sufficiently large.

Kegel spaces give rise to edge spaces, cf. relation (1.8) for H = Ks,γ(X∧).

For singularity order 2 we now consider a compact element B ∈ M1 with edge
Y := s1(B), dimY =: q > 0, and define spaces Ks,γ(B∧) for s ∈ R and a pair of
weights γ := (γ1, γ2) ∈ R2. Assume, for convenience, that Y has a neighbourhood
V which corresponds to a trivial XM-bundle over Y for some compact X ∈ M0.
On our B ∈ M1 with edge Y, locally near the edge modeled on XM × Y we first
form the edge space Ws(Y,Ks,γ1(X∧)) for a weight γ1 ∈ R and define

(1.26) Hs,γ1(B) := ω1Ws(Y,Ks,γ1(X∧)) + (1− ω1)Hs(2B)

for any cut-off function ω1 := ω1(r1) on B, i.e., some function in C∞(s0(B)) which
is equal to 1 in a neighbourhood of Y. Set H∞,γ1(B) :=

⋂
s∈RH

s,γ1(B).

Let

Sγ2(R+, H
∞,γ1(B)) := ω2H∞,γ2(R+, H

∞,γ1(B))

+ (1− ω2)S(R, H∞,γ1(B))|R+ ,
(1.27)

where ω2 := ω2(r2) is a cut-off function on the r2 half-axis. We form the space of

edge pseudo-differential operators

(1.28) Lµ(B, gB ;Rd) ⊂ Lµcl(s0(B;Rd)
for weight data gB := (γ1, γ1 − µ,Θ1), with Θ1 := (−(ϑ1 + 1), 0] for a ϑ1 ∈ N.

Definition 1.6. Let Mµ
O(B, gB ;Rd) denote the space of all

h(v2, ζ) ∈ A(Cv2 , Lµ(B, gB ;Rdζ)))

such that h(λ+ iρ, ζ) ∈ Lµ(B, gB ; Γλ×Rd) for every λ ∈ R, uniformly in compact
λ-intervals.
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Definition 1.7. For compact B ∈ M1 with edge Y, locally near Y modeled on
XM × Y for an X ∈M0 and γ := (γ1, γ2) we define

K0,γ(B∧) := ω2ω1H0,γ2(R+× Y,K0,γ1(X∧)) + (1−ω2)ω1H0,0(R+× Y,K0,γ1(X∧))

+ (1−ω2)(1−ω1)K0,0((2B)∧)) + ω2(1−ω1)K0,γ2((2B)∧))

(1.29)

for cut-off functions ωi = ωi(ri) i = 1.2.

In the latter definition we employ that the double 2B belongs to M0. The spaces
of Definition 1.7 are Hilbert with scalar products from the non-direct sum. In
particular, we fix the scalar product of K0,0(B∧) as a reference scalar product.

Note that κ = {κδ}δ∈R+ defined by

(1.30) (κδu)(rk, ·) = δ(b+1)/2u(δrk, ·)
turns K0,γ(Bwedge) to a Hilbert space with group action.

We have a non-degenerate sesquilinear pairing

(1.31) (·, ·)K0,0(B∧) : K0,γ(B∧)×K0,−γ(B∧)→ C

for any γ = (γ1, γ2) ∈ R2, and we have a natural inclusion

(1.32) Sγ2(R+, H
∞,γ1(B)) ⊆ K0;γ2,γ2(B∧).

This allows us to identify the space

S−γ2(R+, H
−∞,−γ1(B)) = ω2H−∞,−γ2(R+, H

−∞,−γ1(B))

+ (1− ω2)S ′(R, H−∞,−γ1(B))|R+

(1.33)

with the anti-dual of
Sγ2(R+, H

∞,γ1(B)).

In some considerations such as in the k = 2-analogue of Lemma 2.2 below, it makes
sense to employ

Hs,γ2;e(R+, H
s,γ1(B)) := ω2Hs,γ2(R+, H

s,γ1(B))

+ (1− ωr2)r−e2 Hs(R, Hs,γ(B))|R+

(1.34)

for any s, e ∈ R. Then for B ∈M1, dimB = b, where

(1.35) Sγ2(R+, H
∞,γ1(B)) = lim←−

s,e∈R
Hs,γ2;e(R+, H

s,γ1(B))

Theorem 1.8. For every h(r2, v2, η2) ∈M0
Ov2

(B, gB ;Rq2r2η2), gB := (γ1, γ1, (−(ϑ1 +

1), 0]) the operator

Op
γ2−b/2
Mr2

(h)(η2) : K0;γ1,γ2(B∧)→ K0;γ1,γ2(B∧)

for b := dimB is continuous.
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Proof. The claimed continuity can be reduced to a Calderón-Vaillancourt argu-
ment which is valid also for arbitrary orders k.

For every µ, γ1, γ2 ∈ R we choose an element fµ(r2, v2, η2) ∈ Mµ
Ov2

(B, gB ;Rwι ×
Rq2r2η2) such that for any sufficiently large |ι| and |η2| the operators

(1.36) r−µ2 Op
γ2−b/2
M (fµ)(η2) : Sγ2(R+, H

∞,γ1(B))→ Sγ2−µ(R+, H
∞,β−µ(B))

as well as
(1.37)

r−µ2 Op
γ2−b/2
M (fµ)(η2) : (Sγ2(R+, H

∞,γ1(B))′ → (Sγ2−µ(R+, H
∞,γ1−µ(B))′

are isomorphisms.

For the construction of fµ we can proceed as follows. We consider the space of
holomorphic Mellin symbols

(1.38) Mµ
Ov2

(B, gB ;Rwι × Rq2η̃2)

with an extra parameter ι ∈ Rw. We obtain elements of the space (1.38) by kernel
cut-off from the parameter-dependent space

(1.39) Lµ(B, gB ;Rwι × Γλ × Rq2η̃2)

Then we can start with a parameter-dependent elliptic l̃(ι, ρ2, r2η2), ρ2 ∈ Γλ in
(1.39) and pass via kernel cut-off, where ρ2 turns to the complex variable v2 to

an element fµ(r2, ι, v2, η2) := f̃µ(ι, v2, r2η2) in (1.38). For sufficiently large |ι|, |η2|
we can first prove the injectivity of(

rµ2 Op
γ2−µ−b/2
M ((fµ)−1)(η2)

)
r−µ2 Op

γ2−b/2
M (fµ)(η2)

in K0,γ(B∧) which entails the injectivity on Sγ2(R+, H
∞,γ1(B))) and then, via the

sesquilinear pairing (1.31) the injectivity also on (Sγ2(R+, H
∞,γ1(B)))′.

Choose an f−s(r2, v2, η2) ∈ M−sOv2 (B, gB ;Rq2r2η2) of this kind and denote the iso-

morphism (1.37) by

R−s = rs2Op
γk+s−b1/2
M (f−s)(η2).

For γ = (γ1, γ2), s ∈ R we define

(1.40) Ks,γ(B∧) := R−s
(
K0,γ−s(B∧)

)
,

endowed with the norm

‖u‖Ks,γ(B∧) := ‖v‖K0,γ−s(B∧)

for u = R−sv.
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Theorem 1.9. For every µ ∈ R, γ := (β, γ2) ∈ R2 there exists an element

(1.41) fµ(r2, v2, η2) ∈Mµ
O(B, gB ;Rqr2η2)

for gB := (γ1, γ1 − µ, (−(ϑ1 + 1), 0]), such that for any η2 6= 0 the operator

(1.42) r−µ2 Op
γ2−b1/2
M (fµ)(η2) : Ks,γ(B∧)→ Ks−µ,γ−µ(B∧)

is an isomorphism for every s ∈ R. Moreover, an operator (1.42) for any fµ as in
(1.41) is continuous for η2 6= 0.

Proof. First we write

Ks,γ(B∧) = R−sK0,γ−s(B∧), Ks−µ,γ−µ(B∧) = R−(s−µ)K0,γ−(s−µ)(B∧).

Then, denoting the operator (1.41) to be established by A we can consider B :=
Rs−µAR−s : K0,γ−s(B∧) → K0,γ−(s−µ)(B∧). It suffices to construct any isomor-
phism B : K0,γ−s(B∧) → K0,γ−(s−µ)(B∧) in our operator class and then return
to A := R−(s−µ)BRs. Such a B can be easily found by the former methods, and
then we find the desired A. Then we also obtain the second assertion.

1.4. Singular Functions and Discrete Asymptotics

For understanding the edge algebra it is essential to look at ideals of operators
which are related to singular functions of asymptotics when we approach singu-
larities. In this subsection we establish an approach which is easier than the one
developed, e.g., [56]. We focus on constant discrete asymptotics. For brevity we
do not consider continuous asymptotics. Let us first look at the traditional edge
algebra on a manifold B with edge locally near s1(B) modeled on Rq × XM for
a compact X ∈ M0. Then a discrete asymptotic types associated with weight
data (β, Θ) and dimension n := dimX, for a weight β ∈ R and a weight interval
Θ = (−(ϑ+ 1), 0] for a ϑ ∈ N ∪ {∞} is defined as a sequence

(1.43) P := {(pj ,mj)}j=1,...,N ⊂ C× N

such that πCP := {pj}j=1,...,N is finite if ϑ is finite, otherwise we assume Re pj →
∞ for j →∞ and

πCP ⊂ {v ∈ C : (n+ 1)/2− β + ϑ < Re v < (n+ 1)/2− β)}.

The space of singular functions EP(X∧) over X∧ for a finite asymptotic type P
associated with the weight data (γ,Θ) is defined as the set

(1.44) EP(X∧) := {ω
N∑
j=0

mj∑
l=0

cjlr
−pj logl r : cjl ∈ C∞(X)},

where ω(r) is a cut-off function. Then we set Ks,βΘ (X∧) := lim←−ε>0
Ks,β+ϑ−ε(X∧)

and the non-direct sum

(1.45) Ks,γ1P (X∧) := Ks,γ1Θ (X∧) + EP(X∧).
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Globally on a manifold B ∈M1 with edge Y and β ∈ R we set

(1.46) Hs,γ1
P (B) := ω1Ws(Y,Ks,γ1P (X∧)) + (1− ω1)Hs(2B),

cf. also notation (1.26). In addition we set Ks,γ1;e(X∧) := [r]−eKs,γ1(X∧) for any
e ∈ R and Ks,γ1;e

P (X∧) := [r]−eKs,γ1;e
P (X∧). An element C belongs to L−∞(B, gB)

for a manifold B ∈M1 with edge and gB := (γ1, γ1 − µ, (0,−(ϑ+ 1]) if it induces
continuous maps

C : Hs,γ1(B)→ H∞,γ1−µP (B), C∗ : Hs,−γ1+µ(B)→ H∞,−γ1S (B)

for discrete asymptotic types P, S depending on C. We set L−∞(B, gB ;Rdζ) :=

S(Rdζ , L−∞(B, gB)).

Definition 1.10. An element g(y, η) ∈ Sµcl(Ω × Rq;Ks,γ1(X∧),K∞,γ−µ(X∧)) is
called a Green symbol if

(1.47) g(y, η) ∈ Sµcl(Ω× Rq;Ks,γ1;e(X∧),K∞,γ1−µ;∞
P (X∧)),

(1.48) g∗(y, η) ∈ Sµcl(Ω× Rq;Ks,−γ1+µ;e(X∧),K∞,−γ1;∞
S (X∧))

for all s, e ∈ R, where “g∗” indicates the K0,0(X∧)-adjoint of g, and P, S are
asymptotic types depending on g.

The symbols of Definition 1.10 generate the class LµG(B, g;Rd) ⊂ Lµ(B, gB ;Rd)
of Green operators of the edge calculus.

Let us now recall other subclasses of edge operators, namely, smoothing Mellin plus
Green operators with constant discrete asymptotics. Let us first give a definition
of asymptotic types for smoothing Mellin symbols. Such an asymptotic type is a
sequence

R := {(rj , nj)}j∈J ⊆ C× N
for an index set J ⊆ Z such that πCR := {(rj)}j∈J intersects every strip {v ∈ C :
c ≤ Re v ≤ c′} for finite c ≤ c′ in a finite set of points.

Definition 1.11. By M−∞R (X) we denote the set of all

f ∈ A(C \ πCR, L−∞(X))

such that for any πCR-excision function χ we have χf ∈ L−∞(X; Γλ)) for every
real λ, uniformly in compact λ-intervals and which are meromorphic with poles
at the points of πCR of multiplicity nj + 1 and Laurent coefficients of finite rank
belonging to L−∞(X).

Smoothing Mellin symbols associated with the weight interval (−(ϑ + 1), 0] for
ϑ ∈ N are of the the form

(1.49) m(y, η) := r−µω1,η

ϑ∑
j=0

∑
|α|≤j

rjOp
γjα−n/2
M (fjα)(y)ηαω′1,η
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for ω1,η(r) = ω1(r[η]) with ω1 being a cut-off function in r, arbitrary

fjα(y, v) ∈ C∞(Ω,M−∞Rjα(X))

for Mellin asymptotic types Rjα and weights

γ − j ≤ γjα ≤ γ such that Rjα ∩ Γ(n+1)/2 − γjα = ∅, n = dim X.

Applying ideas of [26], we can define singular functions also in another manner.
It may be convenient to avoid cut-off functions in the definition of (1.44), or in
higher order analogues. For instance, if we replace ω(r) by a function of the form

e−r
2N

for some N ∈ N, N ≥ 1, then we obtain a modified space EP(X∧), where
(1.45) remains the same, except that the resulting asymptotic type P satisfies the
shadow condition, i.e., (p,m) ∈ P entails (p − j,m) ∈ P for j ∈ N such that
Re (p− j) > (n+ 1)/2− γ + ϑ.

Similar constructions make sense over any B ∈ M1 rather than X ∈ M0 By
LµM+G(B, gB) ⊂ Lµ(B, gB) we denote the space of all operators M +G generated
by symbols (m+g)(y2, η2) for analogues of m of analogues form as (1.49) and Green
symbols g. In a similar manner we can introduce parameter-depending classes with
parameter ζ ∈ Rd by adding ζ as an extra covariable together with η. Details for
arbitrary B ∈ Mk for any k ∈ N are developed in Subsection 2.4 below. The
smoothing Mellin symbols, say, for k = 2 of the class M−∞R (B, gB) 3 f(v2) are a
counterpart of holomorphic Mellin symbols h(r2, v2, η2) ∈Mµ

O(B, gB ;Rqr2η2). Any
such Mellin symbol generates a sequence of conormal symbols. The leading one is
h0(v2) = h(0, v2, 0) which is holomorphic as well.

1.5. Parameter-dependent Edge Calculus

In this subsection we summarize some constructions on parameter-dependent op-
erators on a space B ∈ M1 with edge Y1 := s1(B) for dimY1 = q1 > 0. Because
of the higher corner calculus below from now on we write (y1, η1) rather than
(y, η)and Θ1 instead of Θ, etc.. We assume that B is locally near Y1 modeled on
XM × Rq1 for some compact X ∈M0. These operators furnish a space

(1.50) Lµ(B, gB ;Rdζ) ⊆ L
µ
cl(s0(B);Rdζ)

for weight data g = (γ1, γ1 − µ,Θ1) with weights γ1, γ1 − µ ∈ R and a weight
interval Θ1 = (−(ϑ1 + 1), 0] for some ϑ1 ∈ N. The elements of (1.50) consist of
sums

(1.51) A(ζ) = H(ζ) +M(ζ) +G(ζ) +Aint(ζ) + C(ζ)

where H(ζ) is locally near Y1 of the form

(1.52) H(ζ) := Opy1{ω1r
−µ
1 Op

γ1−n/2
M (h)(y1, η1, ζ)ω′1}

for h(r1, y1, v1, η1, ζ) := h̃(r1, y1, v1, r1η̃1, r1ζ̃) for

(1.53) h̃(r1, y1, v1, η̃1, ζ̃1) ∈ C∞(R+ × Ω,Mµ
O(X;Rqk+d

η̃1,ζ̃
)),
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cut-off functions ω1(r1) ≺ ω′1(r1), M + G ∈ LµM+G(B, gB ;Rdζ), and Aint ∈ (1 −
ω1)Lµcl(s0(B);Rdζ)(1− ω′′1 ) for cut-off functions ω1(r1) � ω′′1 (r1).

Let
a(y1, η1, ζ) = ωOp

β−n/2
M (h)(y1, η1, ζ)ω′

where the operators of multiplication by ω = ω(r1), ω′ = ω′(r1) belong to the
interpretation of a(y1, η1, ζ) as operator-valued symbol

(1.54) a(y1, η1, ζ) ∈ Sµ(Ω1 × Rq1+d
η1,ζ

;Ks,γ1(X∧),Ks−µ,γ1−µ(X∧)).

Moreveocer, C(ζ) ∈ L−∞(B, gB ;Rdζ). The full amplitude functions (a + m +

g)(y1, η1, ζ) of elements (A+M +G+ C)(ζ) ∈ Lµ(B, gB ;Rdζ) furnish a subspace

of Sµ(Ω1 × Rq1+d
η1,ζ1

;Ks,γ1(X∧),Ks−µ,β−µ(X∧)) that we denote by

(1.55) Rµ(Rq1 × Rq1+d, gB).

2. The Higher Iterative Calculus

2.1. Mellin Operators of Arbitrary Order

We now formulate an iterative process of generating higher corner operators. The
operators on M ∈Mk locally near Yk := sk(M) modeled on BM

k−1×Rqk , for some
B := Bk−1 ∈Mk−1 of dimension b and qk = dimYk, have the form

(2.1) A = H +M +G+Aint + C

belonging to a space

(2.2) Lµ(M, g) ⊆ Lµcl(s0(M))

for a tuple of weight data g := (gi)i=1,...,k, gi = (γi, γi − µ,Θi), Θi := (−(ϑi +
1), 0], ϑi ∈ N, where H is locally near sk(M) under the assumption dim sk(M) > 0
of the form

(2.3) H := Opyk{ωkr
−µ
k Op

γk−b/2
Mrk

(h)(yk, ηk)ω′k}

for h(rk, yk, vk, ηk) := h̃(rk, yk, vk, rkηk)

(2.4) h̃(rk, yk, vk, η̃k) ∈ C∞(R+ × Rqk ,Mµ
Ovk

(B, gB ;Rqkη̃k)),

for gB := (gi)i=1,...,k−1, and cut-off functions ωk = ωk(rk), ω′k = ω′k(rk) with
ωk ≺ ω′k. The space Mµ

O(B, gB ; η̃k) is defined as the set of all

h̃(vk, η̃k) ∈ A(Cvk , Lµ(B, gB ;Rqkη̃k)),

such that
h̃(λ+ iρ, η̃k) ∈ Lµ(B, gB ; Γλ × Rqkη̃k)

for every real λ, uniformly in compact λ-intervals. Here, vk = λ+ iρ and (λ, η̃) ∈
R1+qk is the parameter in the edge operator class over B with “sleeping” param-
eters that are contained in the symbol classes which are of nature as extra edge
covariables, cf. the parameter ζ in (1.50).
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Moreover, we define M +G ∈ LµM+G(M, g) in a separate step, and employ Aint ∈
(1−ω)Lµ(M \ sk(M), gB)(1−ω′′) for cut-off functions ω(r) � ω′′(r), known from
the iterative steps before.

Because of relation (2.2) the operators A ∈ Lµ(M, g) have a standard homogeneous
principal symbol σ0(A). Moreover, we define

(2.5) σk(A)(yk, ηk) := σk(H)(yk, ηk) + σk(M +G)(yk, ηk).

The second term on the right-hand side is defined in Subsection 2.4 below. Con-
cerning H we set

(2.6) σk(H)(yk, ηk) := r−µk Op
γk−b/2
Mrk

(h0)(yk, ηk)

for ηk 6= 0,

h0(rk, yk, vk, ηk) := h̃(0, yk, vk, rkηk).

We shall see below that σk(A)(yk, ηk) defines a family of continuous operators

(2.7) σk(A)(yk, ηk) := Ks,γ(B∧)→ Ks−µ,γ−µ(B∧)

for every s ∈ R and γ = (β, γk) for β := (γ1, . . . , γk−1). Since operators A ∈
Lµ(M, g) belong at the same time to a similar operator space over M \ sk(M) ∈
Mk−1, the definition (2.6) of symbols can be iterated, which gives us first σk−1(A)(yk−1, ηk−1) :
Ks,β(C∧)→ Ks−µ,β−µ(C∧) where B locally near sk−1(B) modeled on CM×Rqk−1

for a C ∈Mk−2, ηk−1 6= 0, etc., up to σ0(A)(y0, η0), mentioned before.

Definition 2.1. By Rµ(Ωk × Rqk , g) we denote the set of all operator families

(2.8) a(yk, ηk) := ωkr
−µ
k Op

γk−b/2
Mrk

(h)(yk, ηk)ω′k + (m+ g)(yk, ηk)

for arbitrary cut-off functions ωk := ωk(rk), ω′k := omega′k(rk), and

h(rk, yk, vk, ηk) ∈ C∞(R+ × Ωk,M
µ
Ovk

(B, gB ;Rqkrkηk)).

The elements of Rµ(Ωk × Rqk , g) are local amplitude functions for the calculus
of operators A ∈ Lµ(M, g) close to sk(M), up to the interior contributions Aint.
Similarly we have local amplitude functions close to every sj(M), up to the interior
contributions, for every 0 < j < k. Writing

symbLµ(M, g) := {σ(A) = (σj(A))j=0,...,k : A ∈ Lµ(M, g)}

we have a principal symbolic map A 7→ σ(A), namely,

σ : Lµ(M, g)→ symb(Lµ(M, g).

We form the spaces

(2.9) Hs,β(B) := ωk−1Ws(Yk−1,Ks,β(CM)) + (1− ωk−1))Hs,δ(2B)

for δ := (γ1, . . . , γk−2) and a cut-off function ωk−1 in rk−1.
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Using the space H∞,β(B) =
⋂
s∈RH

s,β(B) for compact B ∈Mk−1 and any weight
tuple β = (γ1, . . . , γk−1) we set
(2.10)
Sγk(R+, H

∞,β(B)) := ωkH∞,γk(R+, H
∞,β(B)) + (1− ωk)S(R, H∞,β(B))|R+ ,

where ωk is a cut-off function on the rk half-axis. Since the Kegel spaces involved in
(2.7) are studied later on instead of (2.7) we interpret the symbol σk(A) according
to

Lemma 2.2. The symbol σk(A)(yk, ηk) induces a family of continuous maps

(2.11) σk(A)(yk, ηk) := Sγk(R+, H
∞,β(B))→ Sγk−µ(R+, H

∞,β−µ(B)).

Proof. We focus on the Mellin part of A. The M plus G part is simple and left to

the reader. Let Mu(r) := r−µOpγM (f), first for a Mellin symbol f(v) ∈Mµ
O(H, H̃)

with constant coefficients in r, taking values in a L(H, H̃) for Hilbert spaces H, H̃.
We show that

M : Sγ(R+, H)→ Sγ(R+, H)

is continuous. Here

Sγ(R+, H) := ω(r)H∞,γ(R+, H) + (1− ω(r))S(R, H)|R+

for some cut-off function ω. Let us write M =
(
ω + (1 − ω)

)
M
(
ω̃ + (1 − ω̃)

)
.

Then the desired mapping property for ωMω̃ and ωM(1− ω̃) is certainly true. For
(1−ω)Mω̃ and (1−ω)M(1− ω̃) we may argue in terms of commutation relations,
e.g., (1 − ω)Mω̃r−N = r−N (1 − ω)MN ω̃ for any N ∈ N and a Mellin operator
MN with a translated Mellin symbol. For derivaties in r we combine commutation
relations with r∂r with powers of r treated before. Similar arguments hold when

we replace H, H̃ by projective limits of Hilbert spaces.

In order to understand more on the iterative structure of edge symbols we consider
as an example an edge-degenerate differential operator

(2.12) A = r−µ2

∑
j2+|α2|≤µ

aj2,α2(−r2∂r2)j2(r2Dy2)α2

for coefficients aj2,α2
(r2, y2) ∈ C∞(R+ × Rq2 ,Diff

µ−(j2+|α2|)
deg (B)) for a B ∈ M1

locally close to s1(B) modeled on XM × Ω1 for an X ∈M0 and insert once again

(2.13) aj2,α2 = r
−µ+(j2+|α2|)
1

∑
j1+|α1|≤µ−(j2+|α2|)

bj1,α1(−r1∂r1)j1(r1Dy1)α1

for coefficients bj1,α1
(r1, y1) ∈ C∞(R+ × Rq1 ,Diffµ−(j1+|α1|)(X)). Then we obtain

a corner differential operator

A = r−µ2 r
−µ+(j2+|α2|)
1

∑
j2+|α2|≤µ

∑
j1+|α1|≤µ−(j2+|α2|)

bj1,α1
(−r1∂r1)j1(r1Dy1)α1

(−r2∂r2)j2(r2Dy2)α2

(2.14)
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which is the same as

A = r−µ2 r−µ1

∑
j2+|α2|≤µ

∑
j1+|α1|≤µ−(j2+|α2|)

bj1,α1(−r1∂r1)j1(r1Dy1)α1

(−r1r2∂r2)j2(r1r2Dy2)α2 .

(2.15)

Off r2 = 0 the operator C is edge-degenerate for the edge Ω1×R+,r2 ×Ω2 and has
as such an edge symbol

σ1(A)(y1, r2, y2, η1, ρ2, η2) = r−µ1

∑
j2+|α2|≤µ

∑
j1+|α1|≤µ−(j2+|α2|)

r−µ2 bj1,α1

(−r1∂r1)j1(r1η1)α1(r1r2iρ2)j2(r1r2η2)α2 .

(2.16)

In order to avoid confusion compared with notation in (1.3) the role of y1 now
plays the tuple of variables (y1, r2, y2) and of η1 the covariables (η1, ρ2, η2) which
are multiplied by r1 as it ought to be because of the edge-degenerate behaviour in
r1. However, close to r2 = 0 the operator A is corner-degenerate, and

(2.17) σ2(A)(y2, η2) = r−µ2 Op
γ2−b/2
Mr2

(h0)(y2, η2)

for

h0(y2, v2, η2) = h̃(0, y2, v2, r2η2) =
∑

j2+|α2|≤µ

∑
j1+|α1|≤µ−(j2+|α2|)

bj1,α1
|r2=0

r−µ1 (−r1∂r1)j1(r1Dy1)α1(r1v2)j2(r1r2η2)α2 ,

(2.18)

i.e., σ2(A)(y2, η2) is described by a Mellin symbol in C∞(Rq2 ,Mµ
Ov2

(B, g;Rq2r2η2)).

2.2. Compositions

Theorem 2.3. Let M ∈ Mk, dim sk(M) > 0. Then P ∈ Lµ(M,p) for p = (γi −
ν, γi − (µ+ ν),Θi)i=1,...,k and Q ∈ Lν(M, q) for q = (γi, γi − ν,Θi)i=1,...,k implies
PQ ∈ Lµ+ν(M,p ◦ q) (when one of the factors is properly supported, in obvious
meaning) and

(2.19) σj(PQ) = σj(P )σj(Q), j = 1, . . . , k.

Proof. Similarly as (2.1) we have

P = H +M +G+Aint + C, Q = F +N + L+Bint +D

with obvious notation. Let us first show that HF is of the form

(2.20) Opyk{ωkr
−(µ+ν)
k Op

γk−b/2
M (l)(yk, ηk)ω′k + (m+ g)(yk, ηk)}

for cut-off functions ωk(rk), ω′k(rk), a Mellin symbol

(2.21) l(rk, yk, vk, rkηk) ∈ C∞(R+ × Rqk ,Mµ+ν
O (B, gB ;Rqkrkηk)),

and (m+ g)(yk, ηk) ∈ Rµ+ν
M+G(Rqk × Rqk , gβ). Writing

P := Opyk{σkr
−µ
k Op

γk−ν−b/2
M (h)(yk, ηk)σ′k},
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and

Q := Opyk{ω̃kr
−ν
k Op

γk−b/2
M (m)(yk, ηk)ω̃′k}

we have

PQ =Opyk{ωkr
−µ
k Op

γk−ν−b/2
M (h)(yk, ηk)ω′k}Opyk{ω̃kr

−ν
k Op

γk−b/2
M (m)(yk, ηk)ω̃′k}

= Opyk{ωkr
−(µ+ν)
k Op

γk−b/2
M (T−νh)(yk, ηk)ω′k}Opyk{ω̃kOp

γk−b/2
M (m)(yk, ηk)ω̃′k}

= Opyk{ωkr
−(µ+ν)
k Op

γk−b/2
M (T−νh)(yk, ηk)ω′k}#{ω̃kOp

γk−b/2
M (m)(yk, ηk)ω̃′k}

= Opyk{ωkr
−(µ+ν)
k Op

γk−b/2
M (T−νh)(yk, ηk)}#{Op

γk−b/2
M (m)(yk, ηk)ω̃′k}+G

(2.22)

for

G =Opyk{ωkr
−(µ+ν)
k Op

γk−b/2
M (T−νh)(yk, ηk)(ω′kω̃k−1}

#{Op
γk−b/2
M (m)(yk, ηk)ω̃′k}.

(2.23)

The computation of the Fourier-Mellin Leibniz product on the right-hand side of
(2.22) applies the rules of oscillatory integrals, using the Mellin-modified version
with operator-valued symbols and twisted symbolic estimates, similarly as methods
in Seiler [66]. The convergence of the Mellin oscillatory part employs the fact that
after finitely often differentiating amplitude functions in rk or vk we obtain a decay
which implies convergence of integrals over R+ × R 3 (rk, Im vk) when we apply
any semi-norm of the involved operator algebras. This ensures the shape of (2.21),
including the combination of variables in the form rkηk, the specific arguments for
holomorphic dependence of (2.21) on vk ∈ C and the required shape of remainder
terms. The Fourier part of oscillatory integrals can be treated in an analogous
manner. The expression (2.23) belongs to Lµ+ν

G (M,p◦q), according to the rules of
treating Mellin operator compositions with holomorphic symbols and a factor ω−1
in the middle, for some cut-off function ω. What concerns the M+G-contributions
we employ that those form an ideal. The same is true when compositions contain
an “int”-factor which preserves “int” when the other factor in P or Q is of that
kind, or of Mellin plus Green nature when the other factor belongs to the M+G
operator class.

What concerns the composition rule for symbols the only new aspect compared
with singularity order < k is relation (2.19) for j = k. This follows from limit
expressions of the kind

σj(P )(yk, ηk) = δ−ν lim
δ→∞

κ−1
δ p(yk, δηk)κδ

when we represent, for instance, the operator P locally near sk(M) by an amplitude
function p(yk, ηk) ∈ Rν(Ωk × Rqk , g), cf. Definition 2.1.
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2.3. Higher Kegel and Wedge Spaces

Recall that notation of weights will be employed as follows. We define weighted
spaces of smoothness s ∈ R and weight γ := (γ1, . . . , γk) for any k ≥ 2 and we
define

γ − µ := (γ1 − µ, . . . , γk − µ)

for any µ ∈ R. In order to have simple references to constructions for smaller
singularity orders, we set

β := (γ1, . . . , γk−1), δ := (γ1, . . . , γk−2)

and also γ = (β, γk). Kegel spaces are the framework for expressing operator-
valued symbols of operators A on M ∈Mk. In fact, the construction of our higher
corner operators A refers to local representaions of M close to every yj ∈ sj(M)
as

(2.24) BM
j−1 × Ωj

for some Bj−1 ∈ Mj−1, j = 1, . . . , k, successively yields the principal symbolic
hierarchy

(σj(A)(yj , ηj))j=1,...,k,

together with the standard homogeneous principal symbol σ0(A) on s0(M). Then
σj(A)(yj , ηj)) is a family of operators between weighted Kegel spaces

σj(A)(yj , ηj)) : Ks,γ(j)(B∧j−1)→ Ks−µ,γ(j)−µ(B∧j−1)

for (yj , ηj) ∈ Rqj × (Rqj \{0}) all s ∈ R and weight tuples γ(j) = (γ1, . . . , γj) ∈ Rj ,
where γ(j) − µ = (γ1 − µ, . . . , γj − µ). In this section we introduce and study
these higher Kegel spaces. By virtue of the iterative approach we may assume that
the cases for j < k are treated. Thus we may focus on the case j = k, and we
set B := Xk−1, assuming that B is locally near sk−1(B) = Yk−1 identified with
CM × Yk−1 for some C ∈Mk−2. We use the fact that 2B ∈Mk−2.

Definition 2.4. For compact B ∈Mk−1 with edge Yk−1, locally near Yk−1 modeled
on CM×Yk−1 for a C ∈Mk−2, C

∧ = R+,rk−1
×C, and for weights γ := (β, γk) we

define

K0,γ(B∧) := ωkωk−1H0,γk(R+× Yk−1,K0,β(C∧))

+ (1−ωk)ωk−1H0,0(R+× Yk−1,K0,β(C∧))

+ (1−ωk)(1−ωk−1)K0;δ,0((2B)∧)) + ωk(1−ωk−1)K0;δ,γk((2B)∧))

(2.25)

for cut-off functions ωk = ωk(rk), ωk−1 = ωk−1(rk−1).

In Definition 2.4 we employ that the double 2B belongs to Mk−2. The spaces in
(2.25) are Hilbert spaces and K0,γ(B∧) is endowed with the scalar product of the
non-direct sum. In particular, we fix the scalar product of K0,0(B∧) as a reference
scalar product where the second zero has the meaning of multiple weights

(2.26) 0 := (0, . . . , 0), (k times).
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We have a non-degenerate sesquilinear pairing

(·, ·)K0,0(B∧) : K0;γ(B∧)×K0;−γ(B∧)→ C

for any γ = (β, γk) ∈ Rk, and we have a natural inclusion

(2.27) Sγk(R+, H
∞,β(B)) ⊆ K0;β,γk(B∧).

This allows us to identify the space

(Sγk(R+, H
∞,β(B)))′ = ωkH−∞,−γk(R+, H

−∞,−β(B))

+ (1− ωk)S ′(R, H−∞,−β(B))|R+

(2.28)

with the anti-dual of Sγk(R+, H
∞,β(B)).

We can also form spaces

Hs,γk;e(R+, H
s,β(B)) := ωkHs,γk(R+, H

s,β(B))

+ (1− ωk)r−ek Hs(R, Hs,β(B))|R+

(2.29)

for any s, e ∈ R. Then for B ∈Mk−1, dimB = b, we have

(2.30) Sγk(R+, H
∞,β(B)) = lim←−

s,e∈R
Hs,γk;e(R+, H

s,β(B))

and

Hs,γk;e(R+, H
s,β(B)) ⊆ K0,0(B∧)

for s, e ≥ 0, β, γk ≥ 0, where Hs,γk;e(R+, H
s,β(B)) can be identified with the anti-

dual of H−s,−γk;−e(R+, H
−s,−β(B)) with respect to the K0,0(B∧)-scalar product

and vice versa.

Theorem 2.5. For every

h(rk, vk, ηk) ∈M0
Ovk

(B, gB ;Rqkrkηk)

for gB := (γj , γj , (−(ϑj + 1), 0])j=1,...,k−1 the operator

(2.31) Op
γk−b/2
Mrk

(h)(ηk) : K0,γ(B∧)→ K0,γ(B∧)

is continuous.
The proof will be given below.

Theorem 2.6. Let h(rk, vk, ηk) ∈Mµ
O(B, gB ;Rdrkηk), gB := (γi, γi−µ,Θi)i=1,...,k−1;

then

(2.32) r−µk Op
γk−b/2
Mrk

(h)(ηk) : Sγk(R+, H
∞,β(B))→ Sγk−µ(R+, H

∞,β−µ(B))

is continuous for every β ∈ Rk−1, γk ∈ R and ηk 6= 0.

Proof. The proof follows the lines of Lemma 2.2.
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For every µ ∈ R, γ ∈ Rk and B ∈ Mk−1 of dimension b we choose an element
fµ(rk, vk, ηk) ∈Mµ

Ovk
(B, gB ;Rwιk × Rqkrkηk), γ = (β, γk), such that the operators

(2.33) r−µk Op
γk−b/2
M (fµ)(ηk) : Sγk(R+, H

∞,β(B))→ Sγk−µ(R+, H
∞,β−µ(B)))

as well as
(2.34)

r−µk Op
γk−b/2
M (fµ)(ηk) : (Sγk(R+, H

∞,β(B))′ → (Sγk−µ(R+, H
∞,β−µ(B)))′

are isomorphisms for any ηk 6= 0.

Remark 2.7. The element fµ(rk, vk, ηk) ∈Mµ
Ovk

(B, gβ ;Rwιk×Rqkrkηk) can be chosen

in such a way that isomorphisms (2.33) and (2.34) are induced for all c ≤ γi ≤ c′
for arbitrary fixed c ≤ c′. This only requires that the additional parameters ιk ∈ Rw
at every level of singularity are of sufficiently large absolute value. Therefore, if we
have some fixed tuples of weights in mind, we can arrange the corresponding iso-
morphisms for all γi and −γi for i = 1, . . . , k at the same time, using, if necesary,
translations and dilations in the complex variables vj for all j.

Definition 2.8. Let s, γk ∈ R, β ∈ Rk−1, and let B ∈ Mk−1 be of dimension b.
Choose an f−s(rk, vk, ηk) ∈M−sOvk (B, gB ;Rqkrkηk) and denote the above-mentioned

isomorphism (2.33) or (2.34) by

R−s := rskOp
γk+s−b/2
M (f−s)(ηk),

ηk 6= 0. We define

(2.35) Ks,γ(B∧) := Ks;β,γk(B∧) := R−s
(
K0;β−s,γk−s(B∧)

)
,

for γ := (β, γk), β := (γ1, . . . , γk−1).

Definition 2.9. Let H and H̃ be Hilbert spaces with group action κ and κ̃, respec-

tively. By S0(Rq×Rq;H, H̃)cv we denote the set of all a(y, η) ∈ C∞(R2q,L(H, H̃))
such that
(2.36)

π(a) := sup{‖
{
κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) : (y, η) ∈ R2q, α ≤ α, β ≤ β

}
is finite for α := (M + 1, . . . ,M + 1), β := (1, . . . , 1), with M ∈ N being a

constant belonging to the norm growth of κ̃ in L(H̃). Moreover, let S0(R+ ×
Rq × Γ(b+1)/2−ν × Rq;H, H̃)CV denote the set of all f(r, y, (b + 1)/2 − ν + iρ) ∈
C∞(R+ × Rq × Γ(b+1)/2−ν × Rq,L(H, H̃)) such that

(2.37) a(t, y, ρ, η) := f(e−t, y, (b+1)/2−ν+iρ, η) ∈ S0(R×Rq×R×Rq;H, H̃)cv.

Theorem 2.10. Let H and H̃ be Hilbert spaces with group action κ and κ̃, respec-

tively, and let f(r, y, (b+1)/2−ν+iρ, η) ∈ S0(R+×Rq×Γ(b+1)/2−ν×Rq;H, H̃)CV.

Then OpyOp
ν−b/2
M (f) induces a continuous operator

OpyOp
ν−b/2
M (f) : H0,ν(R+ × Rq, H)→ H0,ν(R+ × Rq, H̃),
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and we have ‖OpyOp
ν−b/2
M (f)‖L(H0,ν(R+×Rq,H),H0,ν(R+×Rq,H̃)) ≤ cπ(f) for a con-

stant c > 0 independent of f.

Proof. The proof follows the lines of Seiler, [64].

Proof of Theorem 2.5. The proof is a consequence of iteratively applying Theorem
2.10. By virtue of Definition 2.4 we can write

K0,γ(B∧) = Hk + Lk
for cut-off functions ωk := ωk(rk), ωk−1 := ωk−1(rk−1),

Hk := ωkωk−1H0,γk(R+×Yk−1,K0,β(C∧))+(1−ωk)ωk−1H0,0(R+×Yk−1,K0,β(C∧))

and

Lk := (1− ωk)(1− ωk−1)K0;δ,0((2B)∧)) + ωk(1− ωk−1)K0;δ,γk((2B)∧)).

The claimed continuity in spaces Hk follows from Theorem 2.10 by applying charts
on Yk−1 to Rqk−1 and a subsequent partition of unity. The spaces contained in Lk
are of smaller singularity order and the continuity holds because of the iteration
step before.

Corollary 2.11. The spaces Ks,γ(B∧) are independent of the choice of R−s in
Definition 2.8.

In fact, let R̃−s be an another order reducing isomorphism of analogous kind as
R−s and denote the resulting space by K̃s,γ(B∧). Then

RsK̃s,γ(B∧) = RsR̃−sK0,γ−s(B∧) = K0,γ−s(B∧)

since by Theorem 2.5 the operator RsR̃−s : K0,γ−s(B∧) → K0,γ−s(B∧) is an

isomorphism. Thus Ks,γ(B∧) = K̃s,γ(B∧).

Remark 2.12. The operators

(2.38) A := r−µk Op
γk−b/2
M (f)(ηk) : Ks,γ(B∧)→ Ks−µ,γ−µ(B∧)

for any f(rk, vk, ηk) ∈Mµ
Ovk

(B, gB ;Rqkrkηk) are continuous for all s ∈ R. Moreover,

we have natural inclusions Ks′,γ(B∧) ↪→ Ks,γ(B∧) for s′ ≥ 0, since

Mµ
O(B, gβ ;Rqkrkηk) ⊆Mµ′

O (B, gB ;Rqkrkηk)

for µ′ ≥ µ, g′B = (γj , γj − µ′,Θj). Then (2.38) can be applied for µ ≤ 0, µ′ = 0.

The continuity (2.38) for s = 0, µ = 0 is stated in Theorem 2.5. That means

A = (R−s)−1AR−s : K0,γ−s(B∧) → K0,γ(B∧) has the form Op
γk−s−b/2
M (f0)(ηk)

for some f0(rk, vk, ηk) ∈Mµ
Ovk

(B, gB ;Rqkrkηk) is continuous. Therefore, using Defi-

nition 2.8 we obtain the asserted continuity of A, cf. relations (1.17), (1.18) which
are valid for arbitrary k.

For any e ∈ R we set
Ks,γ;e(B∧) := [rk]−eKs,γ(B∧)
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or, equivalently,

(2.39) Ks,γ;e(B∧) = r−ek K
s;β,γk+e(B∧).

Remark 2.13. We have

Ks,γ;e(B∧) = R−sK0,γ−s;e(B∧).

In fact, since Definition 2.8 is valid for R−s and all weights γ varying in finite
weight strips of prescribed finite widths we can form R−s(r−ek K0;β,γk+e(B∧)) =

r−ek R̃−sK0;β,γk+e(B∧) where R̃−s is order reducing with a shifted Mellin symbol,
cf. analogously Theorem 1.3 (iv). Thus it suffices to apply Corollary 2.11.

Theorem 2.14. For every s′ ≥ s, γ′ ≥ γ (component wise) and e′ ≥ e we have a
continuous embedding

(2.40) ιs : Ks
′,γ′;e′(B∧) ↪→ Ks,γ;e(B∧),

and (2.40) is compact for s′ > s, γ′ > γ, e′ > e.

Proof. We have

Ks
′,γ′;e′(B∧) = R−s

′
K0,γ′−s′;e′(B∧), Ks,γ;e(B∧) = R−sK0,γ−s;e(B∧)

and thus

Ks
′,γ′;e′(B∧) = R−s(RsR−s

′
)K0,γ′−s′;e′(B∧) = R−sK−(s−s′),γ′−s′−(s−s′);e′(B∧)

Because of the continuous/compact embedding

ι0 : K−(s−s′),γ′−s;e′(B∧) ↪→ K0,γ−s ;e(B∧)

it follows that

ιs : R−sK−(s−s′),γ′−s;e′(B∧) ↪→ R−sK0,γ−s ;e(B∧)

is continuous/compact, as claimed. Note that in the latter conclusion we in-

ductively employed continuous/compact embeddings Hs′,β′(B) ↪→ Hs,β(B) for
s′ ≥ s, γ′ ≥ γ and s′ > s, β′ > β, respectively.

The spaces Ks;β,γk(B∧) are Hilbert spaces with group action κ = {κδ}δ∈R+
for

(1.30), since κ acts on K0,γ−s(B∧), and the shape of R−s shows how κ acts on
K0,γ−s(B∧). We can define associated wedge spaces

Ws(Rqk ,Ks,γ(B∧))

and according to (2.9) establish analysis on the next singularity level, e.g., form
spaces Hs,γ(M) for any M ∈Mk, near sk(M) modeled on BM×Rqk for B ∈Mk−1.

Theorem 2.15. An operator A ∈ Lµ(M, g) for M ∈Mk induces continuous oper-
ators

(2.41) A : Hs,γ(M)→ Hs−µ,γ−µ(M)

for all s ∈ R and γ = (γ1, . . . , γk) involved in g. If σj(A) = 0 for j = 0, . . . , k then
(2.41) is compact.



26 D.-C. Chang and B.-W. Schulze

Proof. The spaces Hs,γ(M) are defined in an analogous manner as (2.9) and
Lµ(M, g) locally near sk(M) consists of all Opyk(a) for a(yk, ηk) ∈ Rµ(Rqk ×
Rqk , g), cf. Definition 2.1. Because of

Rµ(Rqk × Rqk , g) ⊂ Sµ(Rqk × Rqk ;Ks,γ(B∧),Ks−µ,γ−µ(B∧)).

This entails the continuity of

Opyk(a) :Ws(Rqk ,Ks,γ(B∧))→Ws−µ(Rqk ,Ks−µ,γ−µ(B∧))

which is the main contribution to the continuity of (2.41). The contribution from
the “int”-part of A is known by the iterative step before.

2.4. The Calculus for Singular Cones

Operators on singular cones are an aspect of the edge symbolic calculus, analo-
gously as operators on the half-axis normal to a boundary appearing as boundary
symbols in boundary value problems. On singular spaces M ∈ Mk in general for
convenience we assumed that M is compact. However, the symbolic structure of
operators living on M requires considering infinite cones BM for B ∈Mk−1 which
have difficult conical exits to infinity. Therefore, we establish here as a tool the
parameter-dependend operator classes

(2.42) Lµ(B∧, g;Rd \ {0})

living on an open stretched cone B∧ for a B ∈ Mk−1. It would be more conse-
quent to write Lµ(BM, g;Rd) rather than (2.42) but our notation points out the
specific aspect of interpreting rk →∞ as a conical exit to∞ which may contribute
additional exit symbols. However, we first concentrate on asymptotic effects and
Green and Mellin operators with meromorphic Mellin symbols. Later on in this
subsection we comment the nature of operators on the infinite cone from the point
of view of other interesting aspects.

Weight data g := (γi, γi−µ,Θi)i=1,...,k for weight intervals Θi = (−(ϑi+1), 0], ϑi ∈
N, in the case B =: X ∈ M0 only consist of one component; before we often
wrote β rather than γ1. Let us start the consideration with Green operators and
Mellin operators with asymptotics. First we establish discrete asymptotic types
and singular functions. A discrete asymptotic type associated with weight data
(α, Θ) and dimension b := dimB, for a weight α ∈ R and a weight interval
Θ = (−(ϑ+ 1), 0] for a ϑ ∈ N ∪ {∞} is a sequence

(2.43) P := {(pj ,mj)}j=1,...,N ⊂ C× N

such that πCP := {pj}j=1,...,N is finite if ϑ is finite, otherwise Re pj → ∞ for
j →∞ and

πCP ⊂ {v ∈ C : (b+ 1)/2− α+ ϑ < Re v < (b+ 1)/2− α)}.
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Definition 2.16. The space of singular functions EQ,Pk(B∧) over B∧, B ∈ Mk−1,
for a finite asymptotic type Pk associated with the weight data (γk,Θk) is defined
as the set

(2.44) EQ,Pk(B∧) := {ωk
N∑
j=0

mj∑
l=0

cjlr
−pj
k logl rk : cjl ∈ H∞,βQ (B)},

where ωk = ωk(rk) is a cut-off function and Q := (Q1, . . . ,Qk−1) is a tuple of
asymptotic types with Qj being associated with the weight data (γj , Θj), j =
1, . . . , k − 1.

Definition 2.16 is inductive, and for k = 1 and X∧ instead of B∧ for X ∈ M0

we recover the case treated in [53] or [56]. The spaces EQ,Pk(B∧) are Fréchet in a
natural way, and similarly as for k = 1 we can form the spaces

(2.45) Ks;β,γkQ,Θk (B∧) :=
(

lim←−
0<ε<ϑk+1

Ks;β,γk−ϑk−ε(B∧)
)
∩ Ks,βQ ((2B)∧)|(B\sk−1(B))∧ ,

as well as the non-direct sum

(2.46) Ks;β,γkQ,Pk (B∧) := Ks;β,γkQ,Θk,(B
∧) + EQ,Pk(B∧).

In future we apply again notation γ = (β, γk) and we write P rather than (Q,Pk),
and we also form the spaces Ks,γ;e

P (B∧) := [rk]−eKs,γP (B∧) for any e ∈ R. The

spaces H∞,βQ (B) occurring in (2.44) are also defined in an iterative manner, using

Ws(Rqk−1 ,Ks,βQ (C∧)), where B is locally near sk−1(B) modeled on CM×Rqk−1 for
some C ∈Mk−2.

Definition 2.17. An element g(yk, ηk) ∈ Sµcl(Rqk × Rqk ;Ks,γ(B∧),K∞,γ−µ(B∧)) is
called a Green symbol if

(2.47) g(yk, ηk) ∈ Sµcl(R
qk × Rqk ;Ks,γ;e(B∧),K∞,γ−µ;∞

P (B∧)),

(2.48) g∗(yk, ηk) ∈ Sµcl(R
qk × Rqk ;Ks,−γ+µ;e(B∧),K∞,−γ;∞

S (B∧))

for all s, e ∈ R, where “g∗” indicates theK0,0(B∧)-adjoint of g, and P = (P)k=1,...,k,
S = (S)k=1,...,k, are asymptotic types depending on g.

Remark 2.18. By definition Green symbols exist on every singular level, in par-
ticular, for k − 1, and we can formally replace the covariable ηk by (ηk, ζ). As
such they generate the operator class LµG(B, g;Rd) ⊂ Lµ(B, g;Rd) with notation
as in Subsection 1.5. If we drop (yk, ηk) at all, then instead of Green symbols as
in Definition 2.17 we simply obtain parameter-dependent operators

(2.49) G(ζ) : Ks,γ;e(B∧)→ K∞,γ−µ;∞
P (B∧),

(2.50) G∗(ζ) : Ks,γ;e(B∧)→ K∞,γ−µ;∞
S (B∧).

Those furnish the subclass

LµG(B∧, g;Rd \ {0}) ⊂ Lµ(B∧, g;Rd \ {0})
of Green operators on the singular cone B∧.
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Let us now define other subclasses, called smoothing Mellin plus Green operators.
Those are also important both over B as well as over B∧. Let us first give a
definition of asymptotic types for smoothing Mellin symbols. Such an asymptotic
type is a sequence

R := {(rj , nj)}j∈Z ⊂ C× N
such that πCR := {(rj)}j∈Z intersects every strip {v ∈ C : c ≤ Re v ≤ c′} for finite
c ≤ c′ in a finite set of points.

Definition 2.19. By M−∞R (B, gB) we denote the set of all

f ∈ A(C \ πCR, L−∞(B, gB))

which are meromorphic with poles at the points of πCR of multiplicity nj + 1 and
Laurent coefficients of finite rank belonging to L−∞(B, gB). In addition it is re-
quired that for every πCR -excision function χ we have χf |Γλ ∈ S(Γλ, L

−∞(B, gB))
for every λ, uniformly for compact λ-intervals.

Smoothing Mellin operators associated with the weight interval (−(ϑk + 1), 0] for
ϑk ∈ N on the singularity level k ∈ N are written in the form

(2.51) M := r−µk ωk,ζ

ϑk∑
j=0

∑
|α|≤j

rjkOp
γk,jα−b/2
M (fjα)ζαω′k,ζ

for ωk,ζ(rk) = ωk(rk[ζ]) with ωk being an excision function, arbitrary fjα(vk) ∈
M−∞Rjα(B, gB) for Mellin asymptotic types Rjα and weights

γk − j ≤ γk,jα ≤ γk such that Rjα ∩ Γ(b+1)/2 − γk,jα = ∅.

By LµM+G(B∧, g;Rd \ {0}) ⊂ Lµ(B∧, g;Rd \ {0}) we denote the space of all oper-

ators M +G for arbitrary M of the form (2.51) and G ∈ LµG(B∧, g;Rd \ {0}). By
modifying notation in (2.51) we obtain operator-valued symbols

(2.52) m(yk, ηk) := r−µk ωk,ηk

ϑk∑
j=0

∑
|α|≤j

rjkOp
γk,jα−b/2
M (fjα)(yk)ηαkω

′
k,ηk

for arbitrary fjα(yk, vk) ∈ C∞(Ωk,M
−∞
Rjα(B, gB)), Ωk ⊆ Rqk open. Symbols (m+

g)(yk, ηk) form a subspace RµM+G(Rqk × Rqk , g) ⊂ Rµ(Ωk × Rqk , g) constituting
the subclass

LµM+G(M, g;Rd) ⊂ Lµ(M, g;Rd)
of smoothing Mellin plus Green operators in the calculus over M ∈Mk. Operators
of the latter class play a similar role as those in the lower singular calculus, cf.
[53] or [56], and they have similar properties. For M = Opyk(m), m(yk, ηk) as in
(2.52) we define

σk(M)(yk, ηk) := r−µk ωk,|ηk|

ϑk∑
j=0

∑
|α|=j

rjkOp
γk,jα−b/2
M (fjα)(yk)ηαkω

′
k,|ηk|

for ωk,|ηk|(rk) := ωk(rk|ηk|), etc.
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The operator space (2.42) with parameter ζ ∈ Rd \ {0}) is defined as the set of all
operator families

(2.53) A(ζ) = H(ζ) + (M +G)(ζ) + C(ζ)

for (M +G)(ζ) ∈ LµM+G(B∧, g;Rd \ {0}) and

(2.54) H(ζ) := r−µk Op
γk−b/2
M (h)(ζ)

for arbitrary h(rk, vk, ζ) ∈Mµ
Ovk

(B, gB ;Rdrkζ).

Theorem 2.20. Operators A(ζ) in (2.42) induce continuous operators

(2.55) A(ζ) : Ks,γ(B∧)→ Ks−µ,γ−µ(B∧)

and

(2.56) A(ζ) + (M +G)(ζ) : Ks,γP (B∧)→ Ks−µ,γ−µQ (B∧)

for every P with some resulting Q.

Proof. The continuity of A(ζ) in (2.55) is a consequence of the defintion of spaces
Ks,γ(B∧), cf. Definition 2.8. The continuity of G(ζ) in (2.55), more precisely, of

G(ζ) : Ks,γ(B∧)→ K∞,γ−µ(B∧)

is part of the definition of Green operators, and the continuity of M(ζ) in (2.55), in
fact, M(ζ) : Ks,γ(B∧)→ K∞,γ−µ(B∧) can be reduced to order zero by composing
with reductions of orders that are involved in Definition 2.8. The order reductions
preserve smoothing Mellin plus Green operators, and the result for s = 0 is a sim-

ple consequence. The claimed continuity of A(ζ) in (2.56) in spaces Ks;βγkQ,Θk (B∧)
is a consequence of the former continuity on the flat spaces on the right-hand
side of (2.45) combined with commutation of powers of rk through the Mellin ac-
tion, see relation (2.39) and the higher analogue of Theorem 1.3 (iv). Moreover,
singular functions in (2.44) are mapped via the Mellin transform to meromor-

phic functions with H∞,βQ (B)-valued Laurent coefficients. The multiplication by
holomorphic Mellin symbols involved in A(ζ) gives us again such meromorphic
functions. Subsequent application of the inverse Mellin transform gives us back
such asymptotic terms in rk, except for the cut-off factor. However, decomposing
the identity into σk+(1−σk) the summand containing σk is of the type of a singu-
lar function, while the summand with (1− σk) just belongs to (2.45) for s = −∞.
Thus the continuity of A(ζ) in (2.46) is verified. For G(ζ) the claimed continuity
is clear by definition, while for M(ζ) we can argue for each summand separately.
The arguments are the analogous as for A(ζ) in (2.46).

2.5. Operators of Third Singularity Order

Let us now analyze the structure of operators in M ∈Mk for k = 3,

(2.57) M := BM
k−1 × Rqk 3 (rk, xk−1, yk), Bk−1 ∈Mk−1.
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Here, in abuse of notation, we write coordinates in stretched form, i.e., from B∧k−1×
Rqk−1 . We successively assume

Bk−1 := BM
k−2 × Rqk−1 3 (rk−1, xk−2, yk−1), Bk−2 ∈Mk−2,

Bk−2 := BM
k−3 × Rqk−2 3 (rk−2, xk−3, yk−2), Bk−3 ∈Mk−3,

etc. The end of the iteration is given by the space

B1 = XM × Rq1 3 (r1, x0, y1), X ∈M0

for x0 =: x ∈ X, and X compact.

Similarly as for corner-degenerate differential operators of Subsection 2.1 where
k = 2, for any D ∈ Lµ(M, gk) we first have the principal symbol of k-th order

(2.58) σk(D)(yk, ηk).

But then, for the lower order principal symbols, we look at the configuration off
rk = 0 such that (rk, yk) ∈ R+,rk × Rqk become additional edge-variables. Thus,

(2.59) σk−1(D)(rk, yk−1, yk, ρk, ηk−1, ηk).

In this case ρk has the meaning of the Fourier covariable of the edge coordinate rk ∈
R+. In other words, not (yk−1, ηk−1) form variables and covariables on the edge
of order k− 1 but (rk, yk−1, yk, ρk, ηk−1, ηk). In a similar manner, not (yk−j , ηk−j)
for j > 1 are variables and covariables of the edge of order k− j, but variables and
covariables in

σk−j(D)((rk−j+1, yk−j+1), . . . , (rk−1,yk−1), rk, yk,

(ρk−j+1, ηk−j+1), . . . , (ρk−1, ηk−1), ρk, ηk).

(2.60)

At the end of the iteration it follows that

σ0(D)((r1, x, y1), . . . ,(rk−j , yk−j), . . . , (rk−1, yk−1), yk, (ρ1, ξ, η1), . . . ,

(ρk−j , ηk−j), . . . , (ρk−1, ηk−1), ηk).
(2.61)

A(ζ) = r−µk Op
γk−b/2
M (h)(ζ) for h(rk, vk, ζ) ∈Mµ

Ovk
(B, gβ ;Rdrkζ).

We now consider a pseudo-differential example of operators in Lµ(B∧, g,Rdζ) for,

say, B ∈M2; then BM ∈M3. We consider the case d := q3, ζ := η3 and

BM × Rq3 =
((
BM

1 × Rq1
)M × Rq2

)M
× Rq3 .

The operators D3 ∈ Lµ(BM × Rq3 , g) have third order edge symbols of the form

(2.62) A3 := r−µ3 Op
γ3−b2/2
Mr3

(h0)(y3, η3)

with r−µ3 being regarded as part of the operation

A3 : Ks,γ4(B∧)→ Ks−µ,γ4−µ(B∧).

For convenience we consider operators

(2.63) D3 := ϕ3Opy3
{
σ3r
−µ
3 Op

γ3−b2/2
Mr3

(f3)(y3, η3)σ′3
}
ϕ′3,
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for b2 := dimB1 + 1 + q1 and B∧ with (third order) edge Rq3 3 y3, where ϕ3, ϕ
′
3 ∈

C∞0 (Rq3), ϕ3 ≺ ϕ′3, and σ3, σ
′
3 are cut-off functions on the R+,r3 half-axis, σ3 ≺ σ′3.

Moreover, f(r3, y3, v3, η3) := f̃(r3, y3, v3, η̃3)|η̃3=r3η3 , f̃(r3, y3, v3, η̃3) ∈ C∞(R+ ×
Rq3 ,Mµ

O(B, gβ ;Rqkη̃3)), and

h0(r3, y3, v3, η3) = f̃(0, y3, v3, r3η3).

The absence of cut-off functions in (2.62) is explained by the structure of edge

symbols where ζ plays the role of the edge covariable η3 6= 0 and the first r3 in f̃
is frozen at zero. Similarly as in Section 1 we have twisted homogeneity

(2.64) A(δη3) = δµκδA(η3)κ−1
δ for δ ∈ R+.

Observe that for cut-off functions ω3 ≺ ω′3 in r3 the operator families

ω3A(η3)(1− ω′3) and (1− ω′3)A(η3)ω3

are homogeneous Green symbols. Recall that in the definition of Kegel spaces we
imposed a specific ellipticity which is not typical for our Mellin symbols in general.
But we want to illustrate the iterative structure and the higher corner-degenerate
behaviour. The position of lower order degenerate Mellin symbols within h is as
follows. We can apply the principle of sleeping parameters which are successively
wakened to induce higher singular operators. Let us assume in our example that

f3(r3, y3, v3, η3)

consists of parameter-dependent operators of the form

(2.65) ϕ2Opy2
{
σ2r
−µ
2 Op

γ2−b2/2
Mr2

(f2)(y2, η2)σ′2
}
ϕ′2,

for

(2.66) f2(r2, y2, v2, η2) := f̃2(r2, y2, v2, η̃2)|η̃2=r2η2

(2.67) f̃2(r2, y2, v2, η̃2) ∈ C∞(R+ × Rq2 ,Mµ
Ov2

(B1, g1;Rq2η̃2))

where ϕ2, ϕ
′
2 ∈ C∞0 (Rq2), ϕ2 ≺ ϕ′2, and σ2, σ

′
2 are cut off functions on the R+,r2

half-axis, σ2 ≺ σ′2. Moreover, we assume that

f2(r2, y2, v2, η2)

consists of parameter-dependent operators of the form

(2.68) ϕ0Opxϕ1Opy1
{
σ1r
−µ
1 Op

γ1−n/2
Mr1

(f1)(y1, η1)σ′1
}
ϕ′1ϕ

′
0

for

(2.69) f1(r1, x, ξ, y1, v1, η1) := f̃1(r1, x, ξ, y1, v1, η̃1)|η̃1=r1η1

(2.70) f̃1(r1, y1, v1, η̃1) ∈ C∞(R+ × Rq1 ,Mµ
Ov1

(X;Rq1η̃1))
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where ϕ1, ϕ
′
1 ∈ C∞0 (Rq1), ϕ0, ϕ

′
0 ∈ C∞0 (Rn) for n = dim X, ϕ1 ≺ ϕ′1, ϕ0 ≺ ϕ′0,

and σ1, σ
′
1 are cut-off functions on the R+,r1 half-axis, σ1 ≺ σ′1. Then it follows

altogether

D3 = ϕ0Opxϕ1Opy1
{
σ1r
−µ
1 Op

γ1−n/2
Mr1

ϕ2Opy2
{
σ2r
−µ
2 Op

γ2−b2/2
Mr2

ϕ3Opy3
{
σ3r
−µ
3 Op

γ3−b2/2
Mr3

(m3)σ′3ϕ
′
3}σ′2}ϕ′2σ′1}ϕ′1ϕ′0

(2.71)

for the corner-degenerate Mellin-Fourier-symbol

m := m(r1, r2, r3, x, y1, y2, y3, ξ, v1, r1v2, r1r2v3, r1η1, r1r2η2, r1r2r3η3),

where vi in the simplest case stands for i%i in the complex vi-plane, corresponding
to weights γi = 0 for all i.

More general examples of elements in Mµ
O(B, gβ ,Rqkrkηk), also for higher k are ob-

tained together with kernel cut-offs as sums of expressions of the above-mentioned
kind, when the functions ϕl vary over a partition of unity on sl(B) and ϕ′l � ϕl
are smooth functions of compact support. By admitting extra parameters ιk of the
same degenerate behaviour as ηk, and also for the involved lower singular levels,
the emerging functions h(ιk, rk, vk, ηk) induce families of continuous operators

(2.72) h(ιk, rk, vk, ηk) : Hs,β(B)→ Hs−µ,β−µ(B).

Then

(2.73) ‖(Dm
rk
h)(ιk, rk, vk, ηk)‖L(Hs,β(B),Hs−µ,β−µ(B)) ≤ cα〈rk〉−m

for every m ∈ N. If we briefly set H := Hs,β(B), H̃ := Hs−µ,β−µ(B) we obtain

(2.74) Sµ;0(R+ × R;H, H̃)

which is a space of operator-valued symbols with interior order µ and exit order 0
for r →∞. Here R is the space of covariables and can be interpreted as a parallel
to the imaginary axis Γλ in the complex plane. On the level of principal symbols
with respect to ρ ∈ R we may interprete Γλ as Γλ0

for any real λ0, as a consequence
of the holomorphy of Mellin symbols in vk and Cauchy’s theorem. Observe that if
h(r, ρ) belongs to (2.74) then

Dm
r D

n
ρh(r, ρ) ∈ Sµ−m;−n(R+ × R;H, H̃).

Also the mapping properties of operators in L(H, H̃) becomes better under differ-
entiation, e.g., the resulting operators become compact for m > 0, n > 0.

(2.75) A =

(
A K
T Q

)
:
Hs,γ(M,E)

⊕
Hs(Y, J)

→
Hs−µ,γ−µ(M,F )

⊕
Hs−µ(Y,G)

.

The motivation of such operator block matrices comes from elliptic theory. As-
suming that A is σ0-elliptic, i.e., that

σ0(A) : π∗E → π∗F
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for π : T ∗(s0(M)) \ 0 → s0(M) is an isomorphism and also the reduced symbol
close to Y in the local splitting of variables (r, x, y) with covariables (ρ, ξ, η) defined
by σ̃0(A)(r, x, y, ρ, ξ, η) := rµσ0(A)(r, x, y, r−1ρ, ξ, r−1η)

σ̃0(A)(r, x, y, ρ, ξ, η) : E(r,x,y) → F(r,x,y)

for all (ρ, ξ, η) 6= 0, up to r = 0.
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