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ON MULTI-POINTED NON-COMMUTATIVE DEFORMATIONS AND

CALABI-YAU THREEFOLDS

YUJIRO KAWAMATA

1. introduction

We shall develop a theory of multi-pointed non-commutative deformations of a simple
collection in an abelian category. A simple collection is a finite set of objects such that each
object has no endomorphisms except dilations and there are no nonzero homomorphisms
between objects. We note that the objects in a simple collection are not necessarily simple
objects. The commutative deformations of several objects are just the direct product
of deformations of each objects, but there are interactions of objects in the case of non-
commutative deformations. We shall prove that any iterated non-trivial extensions between
the given objects yields a non-commutative deformation in the case of a simple collection,
and we obtain a versal deformation in this way. As applications, we will construct relative
exceptional objects and relative spherical objects in some special cases.

The deformation theory has non-commutative versions in two directions, non-commutative
fibers and non-commutative base. We consider the latter case. The point is that there are
more non-commutative deformations of commutative objects than the commutative defor-
mations as proved in a paper by Donovan and Wemyss [4]. They discovered an interesting
application of the theory of non-commutative deformations to the theory of three dimen-
sional algebraic varieties. They provided a better understanding of the mysterious analytic
neighborhood of a flopping curve on a threefold by investigating non-commutative defor-
mations of the flopping curve. The invariants defined by them are found to be related to
Gopakumar-Vafa invariants and Donaldson-Thomas invariants ([11]). This paper is mo-
tivated by their works. Moreover we consider systematically multi-pointed deformations,
i.e., non-commutative deformations of several objects.

The theory of deformations over a non-commutative base is developed by Laudal [7]. The
definition of non-commutative deformations is very similar to the commutative deforma-
tions, but only the parameter algebra is not necessarily commutative. A non-commutative
Artin semi-local algebra with nilpotent Jacobson radical is not necessarily a direct prod-
uct of Artin local algebras. By this reason, we need to consider several maximal ideals
simultaneously.

The infinitesimal extensions of a deformation and the obstruction theory is similarly de-
scribed by cohomology groups as in [8], and there exists a versal family of non-commutative
deformations under some mild conditions. But there are much more non-commutative de-
formations than the commutative ones. For example, unobstructed deformations in the
commutative case can be obstructed in the non-commutative sense.
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Let k be a field, A a k-linear abelian category, r a positive integer, and Fi (1 ≤ i ≤ r)
objects in A. The set {Fi} is said to be a simple collection if dimHom(Fi, Fj) = δij . We
define non-commutative deformations of the collection {Fi} as iterated non-trivial mutual
extensions of the Fi. We shall prove that the non-commutative deformations behave very
nicely under the condition of simplicity.

In §2, we define a multi-pointed non-commutative deformation of a collection of objects.
In §3, we treat non-commutative deformations of objects as their iterated extensions. First
theorem states that, for any two sequences of iterated non-trivial extensions of a simple
collection, there exists a third sequence of iterated non-trivial extensions which dominates
others (Theorem 3.3). In particular, if the extensions terminate, then there exists a unique
versal deformation.

In the second theorem in §4, we prove the converse that arbitrary sequence of iterated
non-trivial extensions of a simple collection can be regarded as a non-commutative de-
formation. The points is that the base ring of the deformation is recovered as the ring
of endomorphisms. For this purpose, we consider a tower of universal extensions of a
simple collection, and we prove that the flatness of the extension over the ring of endo-
morphisms. In this way we construct a versal multi-pointed non-commutative deformation
(Theorem 4.8).

As applications we construct relative multi-pointed exceptional objects and relative
multi-pointed spherical objects in some special cases in §5 and §6. A relative multi-pointed
exceptional object yields a semi-orthogonal decomposition of a triangulated category, and
a relative multi-pointed spherical object a twist functor. In the case of a local Calabi-Yau
threefold, we shall prove that a versal non-commutative deformation of a simple collection
becomes a relative spherical object if the deformations stop after a finite number of steps.

We shall use the abbreviation “NC” for non-commutative, or more precisely, not neces-
sarily commutative in the rest of the paper.

The author would like to thank Yukinobu Toda and Alexei Bondal for useful discussions
on the subject. This work was partly done while the author stayed at National Taiwan
University. The author would like to thank Professor Jungkai Chen and National Center
for Theoretical Sciences of Taiwan of the hospitality and excellent working condition.

2. definition of r-pointed NC deformations

We give a definition of multi-pointed NC deformations. It is modified from [7] in order
to adapt to our situation of deformations of sheaves. It seems that our treatment is also
different from [5], because our definition works well only in the case of simple collections.
See also [2].

We would like to consider infinitesimal deformations of r coherent sheaves on a variety
at the same time for a positive integer r. If we consider only commutative deformations of
these sheaves, then they deform independently. But NC deformations reflect interactions
among the sheaves.

First we define the category of base rings of deformations according to [7]:
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Definition 2.1. Let k be a base field, let r be a positive integer, and let kr be the direct
product ring. An r-pointed k-algebra R is an associative ring endowed with k-algebra
homomorphisms

kr → R → kr

whose composition is the identity homomorphism.

Let ei be the idempotents of R corresponding to the vectors (0, . . . , 0, 1, 0, . . . , 0) ∈ kr

for 1 ≤ i ≤ r, where 1 is at the i-th place. We have
∑r

i=1 ei = 1, eiei = ei and eiej = 0 for
i ̸= j. Let Rij = eiRej ⊂ R. Then R =

⊕r
i,j=1Rij , and R can be considered as a matrix

algebra (Rij) such that the Rij are k-vector spaces and the multiplication in R is given by
k-linear homomorphisms Rij ⊗k Rjk → Rik.

Let Mi be the kernels of the surjective algebra homomorphisms R → kr → k for 1 ≤ i ≤
r, where the second homomorphisms are i-th projections. These are maximal ideals and
the R/Mi are simple two-sided R-modules. Let M =

∩
Mi.

Definition 2.2. We define (Artr) to be the category of r-pointed k-algebras R such that
dimk R < ∞ and M is nilpotent.

If R ∈ (Artr), then any simple right R-module is isomorphic to some R/Mi.

Definition 2.3. Let A be a k-linear abelian category. A set of objects {Fi}ri=1 in A
is said to be a collection in this paper. Let F =

⊕
Fi. An r-pointed NC deformation

of the collection {Fi} over R ∈ (Artr) is a pair (FR, ϕ) consisting of an object FR of
A which has a flat left R-module structure and an isomorphism ϕ : R/M ⊗R FR

∼= F
inducing isomorphisms R/Mi ⊗R FR

∼= Fi for all i. The r-pointed NC deformation functor
Def{Fi} : (Artr) → (Set) of {Fi} is defined to be a covariant functor which sends R to the
set of isomorphism classes of r-pointed NC deformations of {Fi} over R.

For example, A = (coh(X)), the category of coherent sheaves on an algebraic variety X
defined over k.

Remark 2.4. (1) There is a hull R̂ for the functor Def{Fi} under suitable conditions ([7]).

If r = 1, then the maximal commutative quotient (R̂)ab coincides with the hull of the

usual commutative deformation functor. R̂ is determined by Ext1(F, F ) and the Massey
products (Ext1(F, F ))⊗m → Ext2(F, F ) for m ≥ 2 ([7]). We shall not use these facts.

(2) NC deformations exist only over local base by definition. But Kapranov and Toda
constructed globalization of NC deformations in the commutative direction ([12]).

3. iterated non-trivial extensions

We shall define the notion of a simple collection and consider its iterated non-trivial
extensions. A simple collection behave well under iterated extensions.

Definition 3.1. Let A be a k-linear abelian category, and let r be a positive integer. A
collection {Fi}ri=1 in A is said to be a simple collection if dimHom(Fi, Fj) = δij .
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If A is a category of coherent sheaves on a variety, then a member of a simple collection
is usually called a simple sheaf. This is the origin of the term “simple”. But we note that
a simple sheaf is not necessary a simple object in the abelian category of sheaves.

We consider iterated non-trivial extensions of a simple collection {Fi}ri=1.

Definition 3.2. A sequence of iterated non-trivial extensions of the simple collection
{Fi}ri=1 is a sequence of objects {Gn}0≤n≤N for a positive integer N with decomposi-
tions Gn =

⊕r
i=1G

n
i such that G0

i = Fi, and for each 0 ≤ n < N , there are i = i(n) and
j = j(n) such that

0 → Fj → Gn+1
i → Gn

i → 0

is an extension corresponding to a non-zero element of Ext1(Gn
i , Fj), and Gn+1

i′ = Gn
i′ for

i′ ̸= i.

We prove that any two iterated non-trivial extensions are dominated by a third:

Theorem 3.3. Let {Fi} be a simple collection, and let G be an object. Let 0 → Fij →
Gj → G → 0 for j = 0, 1 be two non-trivial extensions which are not isomorphic. Then
there exists a common object H with non-trivial extensions 0 → Fi1−j → H → Gj → 0.

Proof. Let ξj ∈ Ext1(G,Fij ) be non-zero elements corresponding to the given extensions.
We consider exact sequences

Hom(Fi1−j , Fij ) → Ext1(G,Fij ) → Ext1(G1−j , Fij )

derived from ξ1−j . Let ξ′j ∈ Ext1(G1−j , Fij ) be the images of ξj by the second homo-

morphism. We claim that ξ′j ̸= 0. Indeed if i0 ̸= i1, then the first term vanishes, hence

ξ′j ̸= 0. If i0 = i1, then the image of the first homomorphism is generated by ξ1−j , hence
the image of ξj by the second homomorphism is non-zero because the two extensions are
not isomorphic.

We have a commutative diagram

0 0y y
Fi1

=−−−−→ Fi1y y
0 −−−−→ Fi0 −−−−→ H −−−−→ G1 −−−−→ 0

=

y y y
0 −−−−→ Fi0 −−−−→ G0 −−−−→ G −−−−→ 0y y

0 0
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where the two horizontal short exact sequences correspond to ξ′0 and ξ0. They are com-
mutative by the construction of ξ′0. By 9-lemma, we obtain the two vertical short exact
sequences, which correspond to ξ′1 and ξ1. Therefore we have constructed a common non-
trivial extension H. □

The maximal iterated non-trivial extension is unique if it exists:

Corollary 3.4. Let {Gn}0≤n≤N and {Hm}0≤m≤M be two sequences of iterated non-trivial
extensions of a simple collection {Fi}. Assume that Ext1(GN , Fi) = Ext1(HM , Fi) = 0 for
all i. Then GN ∼= HM .

Remark 3.5. (1) The above theorem is the reason why our theory works well only for simple
collections.

(2) The sheaf GN in the above corollary is the versal r-pointed NC deformation of the
simple collection {Fi} as proved in the next section.

We shall need the following in the next section:

Lemma 3.6. Let {Gn} with Gn =
⊕

iG
n
i be a sequence of iterated non-trivial extensions

of a simple collection {Fi}. Then dimHom(Gn
i , Fj) = δij for all i, j, n.

Proof. We proceed by induction on n. If n = 0, then the assertion is true by the assumption
of the simplicity. Suppose that we have an exact sequence

0 → Fj → Gn+1
i → Gn

i → 0.

Then we have a long exact sequence

0 → Hom(Gn
i , Fk) → Hom(Gn+1

i , Fk) → Hom(Fj , Fk) → Ext1(Gn
i , Fk)

for any k. If k ̸= j, then the third term vanishes, hence the first arrow is bijective. If
k = j, then the last arrow is injective because the extension is non-trivial. Therefore the
first arrow is bijective again. Hence we conclude the proof. □

4. iterated universal extensions

We shall construct a sequence of universal extensions of a simple collection {Fi} under
the assumption that dimExt1(F, F ) < ∞, and prove the existence of a versal r-pointed
NC deformation.

Proposition 4.1. Let {Fi}rr=1 be a simple collection, let F =
⊕r

i=1 Fi be the sum of the

collection, and set F = F (0) and Fi = F
(0)
i . Assume that dimExt1(F, F ) < ∞. Then there

exists a sequence of universal extensions F (n) =
⊕r

i=1 F
(n)
i given by

0 →
⊕
j

Ext1(F
(n)
i , Fj)

∗ ⊗ Fj → F
(n+1)
i → F

(n)
i → 0

for each i, which is also obtained by sequence of iterated non-trivial extensions of the
collection {Fi}.
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Proof. We note that we have dimExt1(F
(n)
i , Fj) < ∞ for all i, j, n under the assumption. In

general, given an object G ∈ A and j such that dimExt1(G,Fj) < ∞, a natural morphism
G → Ext1(G,Fj)

∗ ⊗ Fj [1] in the derived category D(A) yields a universal extension

0 → Ext1(G,Fj)
∗ ⊗ Fj → Gj → G → 0.

For j′ ̸= j, we have a commutative diagram

Gj −−−−→ Ext1(Gj , Fj′)
∗ ⊗ Fj′ [1]y y

G −−−−→ Ext1(G,Fj′)
∗ ⊗ Fj′ [1].

Hence a commutative diagram of extensions

0 −−−−→ Ext1(Gj , Fj′)
∗ ⊗ Fj′ −−−−→ G′

j,j′ −−−−→ Gj −−−−→ 0y y y=

0 −−−−→ Ext1(G,Fj′)
∗ ⊗ Fj′ −−−−→ Gj,j′ −−−−→ Gj −−−−→ 0.

Since Hom(Fj , Fj′) = 0, we have an exact sequence

0 → Ext1(G,Fj′) → Ext1(Gj , Fj′) → Ext1(G,Fj)⊗ Ext1(Fj , Fj′).

The injectivity of the first homomorphism implies that the second line of the above com-
mutative diagram of extensions has no trivial factor which partly splits the extension.
Moreover since the image of the first arrow is contained in the kernel of the second arrow,
the first row of the following commutative diagram splits:

0 0y y
0 −−−−→ Ext1(G,Fj′)

∗ ⊗ Fj′ −−−−→ Ker(α) −−−−→ Ext1(G,Fj)
∗ ⊗ Fj −−−−→ 0

=

y y y
0 −−−−→ Ext1(G,Fj′)

∗ ⊗ Fj′ −−−−→ Gj,j′ −−−−→ Gj −−−−→ 0

α

y y
G

=−−−−→ Gy y
0 0.

Therefore we have a universal extension:

0 → (Ext1(G,Fj)
∗ ⊗ Fj)⊕ (Ext1(G,Fj′)

∗ ⊗ Fj′) → Gj,j′ → G → 0.

By repeating the above argument for all j′, we obtain the desired universal extension. □
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Definition 4.2. We define a filtration of F (n) by Gp(F (n)) = Ker(F (n) → F (p−1)) for

0 ≤ p ≤ n+ 1. We have G0(F (n)) = F (n) and Gn+1(F (n)) = 0.

Let EndG(F
(n)) be the ring of endomorphisms of the object F (n) which preserve the

filtration {Gp}.

Lemma 4.3. The natural ring homomorphism EndG(F
(n+1)) → EndG(F

(n)) is surjective.

Proof. Since we only consider endomorphisms preserving the filtration, there is certainly
a natural ring homomorphism. For any element f ∈ EndG(F

(n)), we have a commutative
diagram in the derived category D(A):

F (n+1) −−−−→ F (n) −−−−→
⊕

j Ext
1(F (n), Fj)

∗ ⊗ Fj [1]

f

y f∗∗
y

F (n+1) −−−−→ F (n) −−−−→
⊕

j Ext
1(F (n), Fj)

∗ ⊗ Fj [1].

We obtain a lifting of f to EndG(F
n+1) by the axiom of a triangulated category. □

By Lemma 3.6, we have the following

Lemma 4.4. Let r0 = r and rm+1 =
∑

j dimExt1(F (m), Fj) for m ≥ 0. Then dimEndG(F
(n)) =∑n

m=0 rm.

Proof. We have dimEndG(F
(0)) = r. The kernel of the ring homomorphism EndG(F

(m+1)) →
EndG(F

(m)) is equal to Hom(F (m+1),
⊕

j Ext
1(F (m), Fj)

∗ ⊗ Fj), whose dimension is equal

to
∑

j dimExt1(F (m), Fj) = rm+1. Therefore we conclude the proof. □

Lemma 4.5. dimEnd(F (n)) ≤
∑n

m=0 rm.

Proof. The assertion follows from Lemma 3.6 and exact sequences. □
Corollary 4.6. The natural inclusion EndG(F

(n)) ⊆ End(F (n)) is bijective.

Let R(n) = End(F (n)) and R
(n)
ij = Hom(F

(n)
j , F

(n)
i ). Then we can write in a matrix form

as R(n) = (R
(n)
ij ). Let M (n) = Ker(R(n) → R(0)) and M

(n)
i = Ker(R(n) → R(0) → k), where

the last arrow is the projection to the i-th factor.

Proposition 4.7. R(n) ∈ (Artr).

Proof. There is a ring homomorphism R(n) → R(0) ∼= kr. The idempotent ei of R(n)

coincides with the projection F (n) → F
(n)
i ⊂ F (n) to the i-th factor. This gives the kr-

algebra structure of R(n). We know already that dimR(n) < ∞.
We shall prove that M (n) is nilpotent by induction on n. M (0) = 0. We assume that

(M (n))m = 0 for somem > 0, and considerM (n+1). By the assumption, (M (n+1))m(F (n+1)) ⊂
Gn+1(F (n+1)), where Gn+1(F (n+1)) =

⊕
j Ext

1(F (n), Fj)
∗⊗Fj . There is an exact sequence

0 → Hom(F (0), Gn+1(F (n+1))) → Hom(F (n+1), Gn+1(F (n+1))) → Hom(G1(F (n+1)), Gn+1(F (n+1))).
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The first homomorphism is bijective, hence the second homomorphism is zero. It follows
that (M (n+1))m(G1(F (n+1))) = 0. Therefore (M (n+1))2m = 0. □

Theorem 4.8. (1) The above constructed F (n) with a natural isomorphism ϕ(n) : R(n)/M (n)⊗R(n)

F (n) ∼= F is an r-pointed NC deformation of the simple collection {Fi} over the ring R(n).
(2) For any infinitesimal r-pointed deformation (FR, ϕ) of {Fi} over a ring R ∈ (Artr),

there exist a positive integer n and a ring homomorphism g : R(n) → R such that (FR, ϕ) ∼=
R⊗R(n) (F (n), ϕ(n)). Moreover, the induced homomorphism dg : M (n)/(M (n))2 → MR/M

2
R

is uniquely determined.

Proof. (1) We only need to show that F (n) is flat over R(n). There are no simple R(n)-

modules other than the R(n)/M
(n)
i , and any right R(n)-module of finite type is an iterated

extension of simple modules. Hence it is sufficient to prove that Tor1
R(n)(R

(n)/M
(n)
i , F (n)) =

0. By the construction, we have

Ker(EndG(F
(k+1)) → EndG(F

(k))) ∼= Hom(F,
⊕
j

Ext1(F (k), Fj)
∗ ⊗ Fj)

for 0 ≤ k < n. Thus we have exact sequences of R(n)-modules

0 →
⊕
j

Ext1(F (k), Fj)
∗ ⊗R(n)/M

(n)
j → R(k+1) → R(k) → 0.

On the other hand, we have sequences of universal extensions

0 →
⊕
j

Ext1(F (k), Fj)
∗ ⊗ Fj → F (k+1) → F (k) → 0.

Since we have R(n)/M
(n)
j ⊗R(n) F (n) ∼= Fj , we conclude that R(k) ⊗R(n) F (n) ∼= F (k) and

Tor1
R(n)(R

(k), F (n)) = 0 for all k.
(2) The assertion follows because any sequence of iterated non-trivial extensions is dom-

inated by F (n) for a large n. □

Remark 4.9. (1) The above argument gives an explicit construction of the pro-representable
hull, i.e., the versal r-pointed NC deformations, for a simple collection in a k-linear abelian
category A as the inverse limit of the F (n).

(2) The presentation of the pro-representable hull by Massey products corresponds to
the following exact sequences

0 → Ext1(F (n+1), Fk) →
⊕
j

Ext1(F (n), Fj)⊗ Ext1(Fj , Fk) → Ext2(F (n), Fk)

where we obtain inductively injective homomorphisms Ext1(F (n), F ) → (Ext1(F, F ))⊗(n+1).
(3) The above defined versal family is not universal due to the non-commutativity of the

deformation rings. The deformation functor is pro-representable if the following condition
is satisfied: for any surjective ring homomorphism R → R′, the natural homomorphism
AutR(FR) → AutR′(FR′) for FR′ = R′ ⊗R FR is surjective. Since Autk(FR) ∼= R, it follows
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that AutR(FR) coincides with the center Z(R) of R. Since Z(R) → Z(R′) is not necessarily
surjective, there is no universal NC deformation of a simple collection in general.

5. r-pointed relative exceptional objects

Exceptional collections yield important examples of semi-orthogonal decompositions.
We extend the definition of an exceptional object to a relative version, and prove that it
also yields a semi-orthogonal decomposition.

We start with a lemma. We note that, if FR is an r-pointed NC deformation of some
collection over R, then Hom(FR, a) has a right R-module structure for any a ∈ A.

Lemma 5.1. Let FR be an r-pointed NC deformation of a simple collection {Fi} over
R ∈ (Artr). Then the following hold.

(1) R/Mi ⊗R FR
∼= Fi, and Hom(FR, Fi) ∼= R/Mi as right R-modules for all i.

(2) Assume that dimHom(Fi, FR) = 1 for all i. Then there exists a permutation σ of r
elements such that Hom(Fi, FR) ∼= R/Mσ(i) as left R-modules for all i.

Proof. (1) Let fi ∈ Hom(FR, Fi) be the natural projection. Then Mi = {r ∈ R | fir = 0}.
Therefore we have our claim.

(2) As left R-modules, we have Hom(Fi, FR) = R/Mj for some j = j(i). Then we have
dimHom(Fi, FR,k) = δjk. On the other hand, for each k, there is at least one i such that
Hom(Fi, FR,k) ̸= 0. Therefore we have a one to one correspondence. □

We denote by RHom(a, b) an object
⊕

pHom(a, b[p])[−p] in D(k-mod).

Definition 5.2. Let {Fi}ri=1 be a simple collection in the category of coherent sheaves
(coh(X)) on a smooth projective variety, and let FR =

⊕
i FR,i be an r-pointed NC defor-

mation over R ∈ (Artr). The pair (FR, F ) for F =
⊕

i Fi is said to be an r-pointed relative
exceptional object if RHom(FR, F ) ∼= R/M as right R-modules.

We note that Hom(FR,i, FR,j) may not vanish even though Hom(Fi, Fj) = 0 for i ̸= j.

Theorem 5.3. Let (FR, F ) be an r-pointed relative exceptional object over R. Then there
is a semi-orthogonal decomposition

Db(coh(X)) = ⟨(⟨Fi⟩ri=1)
⊥, ⟨Fi⟩ri=1⟩.

Proof. Let G : Db(coh(X)) → Db(coh(X)) be the functor given by a Fourier-Mukai kernel
Cone(F ∗

R ⊠L
R FR → ∆X) on X ×X. Then we have distinguished triangles

RHom(FR, a)⊗L
R FR → a → G(a)

for all a ∈ Db(coh(X)).
Since Hom(FR, FR) ∼= R, we obtain RHom(FR, G(a)) = 0 by taking RHom(FR, •) of the

above triangle. We shall prove that RHom(Fi, G(a)) = 0 for all i. Let

· · · → Rak → · · · → Ra1 → Ra0 → R/Mi → 0

be a free resolution of an R-module R/Mi. Since FR is flat, we have an exact sequence

· · · → F ak
R → · · · → F a1

R → F a0
R → Fi → 0.
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Let Gk = Im(F ak
R → F

ak−1

R ). Then we have Homp(Fi, G(a)) ∼= Homp−k(Gk, G(a)). If we
take k → ∞, we conclude that Homp(Fi, G(a)) = 0 for any p. Therefore we have our
assertion. □

We note that similar statements hold for singular variety X if F ∗
R exists in Db(coh(X)),

or more generally for suitable k-linear abelian category and DG enhancement of its derived
category.

We consider some examples which yield relative exceptional objects.

Example 5.4. LetX be a singular quadric surface inP3 defined by an equation x1x2+x23 =
0.

Let P = [1 : 0 : 0 : 0] ∈ X be a vertex. Then we have a projection p : X \ {P} → P1.
We denote by OX(a) the reflexive hull of an invertible sheaf p∗OP1(a) for any integer
a. OX(2) is an invertible sheaf coming from a hyperplane section in P3, and we have
OX(KX) ∼= OX(−4). By the vanishing theorem, we have Hp(X,OX(a)) = 0 for p > 0 if
a ≥ −3.

Let F = OX(−1). We define an extension 0 → F → G → F → 0 by the following
commutative diagram:

0 −−−−→ OX(−1) −−−−→ G −−−−→ OX(−1) −−−−→ 0

=

y y y
0 −−−−→ OX(−1) −−−−→ O2

X −−−−→ OX(1) −−−−→ 0

where the right vertical arrow is obtained from an inclusion OX(−2) → OX whose cokernel
is supported in the smooth locus. We note that G is a locally free sheaf, hence the extension
is non-trivial. Thus the dimension of the local extension at P is dimH0(X, Ext1(F, F )) = 1.

We shall prove that there is no more non-trivial extension, and G is a versal 1-pointed NC
deformation of F . Since G is locally free, it is sufficient to prove that H1(X,Hom(G,F )) =
0. We have an exact sequence

0 → OX → Hom(G,F ) → OX → Ext1(F, F ) → 0

Let H = Ker(OX → Ext1(F, F )). Then we have H1(X,OX) = H1(X,H) = 0, hence
H1(X,Hom(G,F )) = 0.

The base ring of the deformation G is R = k[t]/(t2), and G is a relative exceptional
object over R. Indeed, though X is singular, we have a similar argument as in the above
theorem because G is locally free.

Example 5.5. Let X be a singular quadric hypersurface in P4 defined by an equation
x1x2 + x3x4 = 0. It is a cone over P1 ×P1.

Let P = [1 : 0 : 0 : 0 : 0] ∈ X be a vertex, and p : X \ {P} → P1 × P1 a projection.
We denote by OX(a, b) the reflexive hull of an invertible sheaf p∗OP1×P1(a, b) for any
a, b. OX(1, 1) is an invertible sheaf coming from a hyperplane section in P4, and we have
OX(KX) ∼= OX(−3,−3). By the vanishing theorem, we have Hp(X,OX(a, b)) = 0 for
p > 0 if a, b ≥ −2.
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Let F1 = OX(0,−1) and F2 = OX(−1, 0). We define an extension 0 → F2 → G1 →
F1 → 0 by the following commutative diagram:

0 −−−−→ OX(−1, 0) −−−−→ G1 −−−−→ OX(0,−1) −−−−→ 0

=

y y y
0 −−−−→ OX(−1, 0) −−−−→ O2

X −−−−→ OX(1, 0) −−−−→ 0

where the right vertical arrow is obtained from an inclusion OX(−1,−1) → OX . We note
that G1 is a locally free sheaf, hence the extension is non-trivial. In a similar way, we
construct an extension 0 → F1 → G2 → F2 → 0 with G2 locally free.

We shall prove that H1(X,Hom(Gi, Fj)) = 0 for all i, j. We have an exact sequence

0 → OX(−1, 1) → Hom(G1, F2) → OX → Ext1(F1, F2) → 0.

We have dimH0(X, Ext1(F1, F2)) = 1, and H1(X,Hom(G1, F2)) = 0 as in the above exam-
ple. On the other hand, the natural homomorphism OX(1, 0)⊗OX(0,−1) → OX(1,−1) is
surjective. HenceHom(G1, F1) → OX(1,−1) is also surjective, andH1(X,Hom(G1, F1)) =
0

G1 ⊕G2 is a versal 2-pointed NC deformation of F1 ⊕ F2 over

R =

(
k kt
kt k

)
mod t2.

G1 ⊕ G2 is a 2-pointed relative exceptional object over R. We note that G1 and G2 are
exceptional objects, but they do not form an exceptional collection, though there is a
semi-orthogonal decomposition with their right orthogonal complement.

Example 5.6. Let X = P(1, 1, d) be the cone over a rational normal curve of degree d.
We have reflexive sheaves of rank one OX(a) for integers a, and OX(KX) ∼= OX(−d− 2).
We consider NC deformations of a sheaf F = OX(−1).

Since dimH0(X,OX(d− 1)) = d, we have an exact sequence

0 → OX(−1)d−1 → Od
X → OX(d− 1) → 0.

Let Z ∈ |OX(d)| be the smooth curve at infinity. Then we have an exact sequence

0 → OX(−1) → OX(d− 1) → OZ(d− 1) → 0.

Since dimH0(Z,OZ(d − 1)) = d, there is a surjective homomorphism Od
X → OZ(d − 1).

Let G be the kernel. Then G is a locally free sheaf of rank d on X. Thus we have the
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following commutative diagram

0 0y y
0 −−−−→ OX(−1)d−1 −−−−→ G −−−−→ OX(−1) −−−−→ 0

=

y y y
0 −−−−→ OX(−1)d−1 −−−−→ Od

X −−−−→ OX(d− 1) −−−−→ 0y y
OZ(d− 1)

=−−−−→ OZ(d− 1)y y
0 0

where all sequences except the first horizontal sequence is exact. Therefore G is a NC
deformation of F = OX(−1):

0 → OX(−1)d−1 → G → OX(−1) → 0

over R = k[t1, . . . , td−1]/(t1, . . . , td−1)
2, and dimH0(X, Ext1(F, F )) = d − 1. We have an

exact sequence

0 → OX → Hom(G,F ) → Od−1
X → Ext1(F, F ) → 0.

Hence H1(X,Hom(G,F )) = 0 as in the above example. Therefore G is a versal NC
deformation of F = OX(−1).

G is a relative exceptional object over R. Db(coh(X)) is generated by a relative excep-
tional collection (OX(−d), G,OX).

Example 5.7. Let X = P(1, 2, 3) be a weighted projective surface. X has two singu-
lar points P,Q which are Du Val singularities of types A1, A2, respectively. We have
OX(KX) ∼= OX(−6). We consider NC deformations of a reflexive sheaf of rank one
F = OX(−1).

In this example, the non-commutative deformations of F do not terminate after finite
steps, though commutative deformations do.

Let us consider local extensions of F at the singular points. At the singular point of
type A1, i.e., a quotient singularity of type 1

2(1, 1), it is already known by the previous

example that the versal NC local deformations has the base ring k[s]/(s2).
We can calculate local extensions at a singularity of type A2, i.e., a quotient singularity

of type 1
3(1, 2), as follows. A cyclic group Z/(3) acts on k[x, y], and let A ⊂ k[x, y] be the

invariant subring. We may assume that the sheaf F is represented by the ideal (x)∩A ⊂ A.
There are exact sequences

0 → (x) ∩A → A⊕ ((y) ∩A) → (x) ∩A → 0

0 → (x) ∩A → A2 → (y) ∩A → 0.
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Therefore the versal NC deformation of the ideal (x) ∩A at Q has the base ring k[t]/(t3).
We prove that a sequence of iterated non-trivial extensions Fn of F never become locally

free for any n by induction on n. If Fn is not locally free at P , then we take an extension

0 → F → Fn+1 → Fn → 0

which induces a non-trivial extension at P and a trivial extension at Q. Then Fn+1 is not
locally free at Q. The same argument works if we interchange P and Q. Therefore we
proved our assertion.

Indeed we could prove that the versal NC deformation has a base ring k⟨s, t⟩/(s2, t3),
which is infinite dimensional, while its maximal abelian quotient k[s, t]/(s2, t3) is finite
dimensional.

If we consider 1-pointed NC deformations of reflexive shaves F2 = OX(−2) and F3 =
OX(−3), then the results are better. Since F2 (resp. F3) is locally free at P (resp. Q),
F2 (resp. F3) has a versal NC deformation G2 (resp. G3) over k[t]/(t3) (resp. k[s]/(s2))
which is a locally free sheaf of rank 3 (reap. 2). They are relative exceptional objects, and
there is a semi-orthogonal decomposition Db(coh(X)) = ⟨G3, G2,OX⟩.

We could generalize the above in the following way. Let X = P(1, a, b) be a weighted
projective plane for coprime positive integers a, b with a < b. We consider 1-pointed NC
deformations of Fa = OX(−a) and Fb = OX(−b). We could prove that there exist versal
deformations Ga and Gb of Fa and Fb, respectively, which are locally free and relative
exceptional objects. Moreover there is a semi-orthogonal decomposition Db(coh(X)) =
⟨Gb, Ga,OX⟩.

6. r-pointed relative spherical objects on Calabi-Yau threefolds

We define relative spherical objects after [9] and [1], and prove that a versal multi-pointed
NC deformation of a simple collection on a Calabi-Yau 3-fold yields a relative spherical
object if the deformation stops infinitesimally and if one more condition holds.

Definition 6.1. Let {Fi}ri=1 be a simple collection of coherent sheaves on a smooth pro-
jective variety X, and let FR =

⊕
i FR,i be an r-pointed NC deformation of {Fi} over

R ∈ (Artr). The pair (FR, F ) for F =
⊕r

i=1 Fi is said to be an r-pointed relative n-
spherical object over R if the following conditions are satisfied:

(1) There exists a permutation σ of r elements such that RHom(FR, Fi) ∼= R/Mi ⊕
R/Mσ(i)[−n] as right R-modules for all i,

(2) F ⊗ ωX
∼= F .

More generally, for a triangulated category with a Serre functor S, the second condition
can be replaced by S(F ) ∼= F [n].

Theorem 6.2. Let (FR, F ) be an r-pointed relative n-spherical object over R. Then there
is an autoequivalence TF of Db(coh(X)), called a relative spherical twist, inducing distin-
guished triangles

RHom(FR, a)⊗L
R FR → a → TF (a)

for all a ∈ Db(coh(X)).
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Proof. ([9]) The functor TF is given by a Fourier-Mukai kernel Cone(F ∗
R ⊠L

R FR → ∆X) on
X ×X.

Since we have RHom(FR, Fi) ∼= R/Mi ⊕R/Mσ(i)[−n], it follows that TF (Fi) ∼= Fσ(i)[1−
n]. There is a positive integer m such that σm = Id. Therefore the homomorphisms
Hom(Fi, Fj [p]) → Hom(Fσ(i), Fσ(j)[p]) are bijective for all i, j, p.

On the other hand, if RHom(Fi, a) = 0 for all i, then TF (a) ∼= a. Since the Fi and such
a’s span Db(coh(X)), we conclude that the functor TF is fully faithful.

Since F ⊗ ωX
∼= F , we have FR ⊗ ωX

∼= FR. Hence

Cone((F ∗
R ⊗ ωX)⊠L

R FR → ∆X ⊗ p∗1ωX) ∼= Cone(F ∗
R ⊠L

R (FR ⊗ ωX) → ∆X ⊗ p∗2ωX).

It follows that STF
∼= TFS for the Serre functor S of Db(coh(X)), and TF is an equivalence

by [3]. □

Proposition 6.3. Let (FR, F ) be an r-pointed relative spherical object over R. Then
R∗ = Homk(R, k) is a free right R-module of rank 1.

Proof. Since dimHom(FR, Fi) = dimHom(Fi, FR) = 1, we can define ri ∈ R = Hom(FR, FR)
as a composition of non-zero homomorphisms FR → Fi → FR up to a constant. Let ϕ ∈ R∗

be a homomorphism R → k such that ϕ(ri) = 1 for all i.
We shall prove that ϕ generates R∗ as a right R-module. Let I = {r ∈ R | ϕr = 0} be

the annihilator ideal of ϕ. If I ̸= 0, then there exist i and 0 ̸= r ∈ I such that Mir = 0
for the i-th maximal ideal Mi of R. We know that such non-zero r ∈ R that Mir = 0 is
unique up to a constant for a fixed i, because dimHom(Fi, FR) = 1. It follows that r = cri
for 0 ̸= c ∈ k. Then 0 = ϕr(1) = ϕ(cri) = c, a contradiction. Hence I = 0. □

Theorem 6.4. Let {Fi}ri=1 be a simple collection of coherent sheaves on a smooth pro-
jective variety X of dimension 3 such that F ⊗ ωX

∼= F for F =
⊕

Fi. Assume that the
versal r-pointed NC deformation FR is obtained by a finite sequence of iterated non-trivial
extensions. Assume moreover that Hom(Fi, FR) ̸= 0 for all i. Then (FR, F ) is relatively
3-spherical over R.

Proof. We have already that Hom1(FR, Fi) = 0 for all i. Then we have Hom1(FR, G) = 0
for any extension G of the Fi. We have an exact sequence

0 → Fi → FR → Gi → 0

for some Gi for each i. Thus

Hom1(FR, Gi) → Hom2(FR, Fi) → Hom2(FR, FR)

Since the last terms is dual to Hom1(FR, FR) = 0, we conclude that Hom2(FR, Fi) = 0.
Let mi be the number of appearances of Fi in the iterated extension FR. Then∑

i

mi = dimHom(FR, FR) = dimHom3(FR, FR)

=
∑
i

mi dimHom3(FR, Fi) =
∑
i

mi dimHom(Fi, FR).
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Since Hom(Fi, FR) ̸= 0 for all i, it follows that dimHom(Fi, FR) = 1 for all i. Therefore
we have Hom3(FR, Fi) = 1 for all i, and we conclude the proof. □

We consider some examples.

Example 6.5. Let f : X → Y be a projective birational morphism from a smooth variety
of dimension 3 to a normal variety such that KX is relatively trivial and the exceptional
locus of f is 1-dimensional. In this case, Y has only terminal Gorenstein singularities. and
the irreducible components Ci of the exceptional locus are smooth rational curves.

Let Fi = OCi(−1). Then {Fi} is a simple collection. The derived dual F ∗
i = RHom(Fi,OX)

is isomorphic to Fi[−2]. Indeed, since C is a locally complete intersection, F ∗
i [2] is a lo-

cally free sheaf on C. Since Rf∗Fi = 0, we have Rf∗F
∗
i = 0 by the duality. Therefore

F ∗
i
∼= Fi[−2].
Let FR be a versal multi-pointed NC deformation of F =

⊕
Fi. It follows that F

∗
R[2] =

RHom(FR,OX)[2] is an iterated non-trivial extension of the {Fi[−2]} with the reversed
order. By the maximality of FR, we have F

∗
R[2]

∼= FR. Therefore the additional assumption
of the above theorem is satisfied.

We note that there are many simple collections on X. For example, for any disjoint
subsets Ij of the set of indexes, if we write Dj =

∪
i∈Ij Ci, then {ODj} is a simple collection.

If li is the length of Ci, i.e., the length of the scheme theoretic fiber over a singular point
of Y at the generic point of Ci, then a set of fat fibers {OkiCi

} for some ki ≤ li is also a
simple collection.

Example 6.6. Let Y ⊂ k4 be a hypersurface of dimension 3 defined by an equation
x1x2 + x3x4(x3 + x4) = 0. Then there is a resolution of singularities f : X → Y as in
the preceding example. The exceptional locus of f consists of two smooth rational curves
C0, C1 meeting at a point P transversally. The normal bundles of the Ci are isomorphic
to OP1(−1)⊕OP1(−1). Let Fi = OCi(−1). Then {F0, F1} is a simple collection.

We can calculate the versal 2-pointed NC deformation FR = FR,0 ⊕ FR,1 of {Fi} as
follows. It is given by iterated non-trivial extensions

0 → F1−i → Gi → Fi → 0

0 → Fi → FR,i → Gi → 0

for i = 0, 1, where Gi are invertible sheaves on C0 ∪ C1 of bidegree (−1, 0) and (0,−1) for
i = 0, 1, respectively. The deformation algebra R has the following form(

k + kt2 kt
kt k + kt2

)
mod t3.

FR is a relative 3-spherical object over R:

RHom(FR, Fi) ∼= R/Mi ⊕R/Mi[−3].

Example 6.7. Let Y ⊂ k4 be a hypersurface of dimension 3 defined by an equation
x1x2+x23+x34 = 0. The blowing up at the origin gives a resolution of singularities f : X → Y
with an exceptional divisor E, which is a quadric cone over P1 that was considered in
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Example 5.4. We use the notation OE(a) defined there. We have KX = f∗KY + E,
OE(E) = OE(−2) and KE = OE(−4).

Let e = OE(−2). Then e is an exceptional object in Db(coh(X)). Let D be its left
orthogonal complement, and let S be the Serre functor of D. Then F = OE(−1) is an
object in D. If S′ is the Serre functor of Db(coh(X)), then we have S′(F ) ∼= OE(−3)[3].
From an exact sequence

0 → OE(−3) → e2 → OE(−1) → 0

we deduce that S(F ) ∼= F [2].
We construct a non-trivial self extension G of F as in Example 5.4. G is a verbsal NC

deformation of F over R = k[t]/(t2), and G is a relative 2-spherical object in D:

RHom(G,F ) ∼= R/M ⊕R/M [−2].

Remark 6.8. The category D in the above example was already considered in [6] 4.3. The
sheaf G there appeared in [10] 4.13. The construction of tilting generators in [14] can also
be considered as a multi-pointed non-commutative deformation of a collection which is not
simple. See also [13].

We have a similar example in dimension 4, where we obtain again a relative 2-spherical
object:

Example 6.9. Let Y ⊂ k5 be a hypersurface defined by an equation x1x2 + x3x4 + x35 =
0. The blowing up at the origin gives a resolution of singularities f : X → Y with an
exceptional divisor E, which is a cone over P1×P1 that was considered in Example 5.5. We
use the notation OE(a, b) defined there. We have KX = f∗KY +2E, OE(E) = OE(−1,−1)
and KE = OE(−3,−3).

Let e1 = OE(−1,−1) and e2 = OE(−2,−2). Then (e2, e1) is an exceptional collection
in Db(coh(X)). Let D be its left orthogonal complement, and let S be the Serre functor of
D. Then F1 = OE(−1, 0) and F2 = OE(0,−1) are objects in D. If S′ is the Serre functor
of Db(coh(X)), then we have S′(F1) ∼= OE(−3,−2)[4]. From exact sequences

0 → OE(−3,−2) → e22 → OE(−1,−2) → 0

0 → OE(−1,−2) → e21 → OE(−1, 0) → 0

we deduce that S(F1) ∼= F1[2]. Similarly we have S(F2) ∼= F2[2].
We construct non-trivial self extensions G1 and G2 of F1 and F2 as in Example 5.5,

respectively. Then G = G1⊕G2 is a versal 2-pointed NC deformation of F = F1⊕F2 over

R =

(
k kt
kt k

)
mod t2. By the vanishing theorem, we have Hp(E,OE(a, b)) = 0 for p > 0

if a, b ≥ −2, and G is a relative 2-spherical object in D:

RHom(G,Fi) ∼= R/Mi ⊕R/M3−i[−2].
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