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Abstract. In this work, we consider the community of three species food web
model with Lotka-Volterra type predator-prey interaction. In the absence of
other species, each species follows the traditional logistical growth model and

the top predator is an omnivore which is defined as feeding on the other two
species. It can be seen as a model with one basal resource and two general-
ist predators, and pairwise interactions of all species are predator-prey type.
It is well known that the omnivory module blends the attributes of several

well-studied community modules, such as food chains (food chain models), ex-
ploitative competition (two predators-one prey models), and apparent compe-
tition (one predator-two preys models). With a mild biological restriction, we
completely classify all parameters. All local dynamics and most parts of global

dynamics are established corresponding to the classification. Moreover, the
whole is uniformly persistent when coexistence appears. Finally, we conclude
by discussing the strategy of inferior species to survive and the mechanism of
uniform persistence for the three species ecosystem.

1. Introduction. In this work, we consider the following three species food web
model 

dU

dt
= rUU(1− U

KU
)− a12UV − a13UW,

dV

dt
= rV V (1− V

KV
) + a21UV − a23VW,

dW

dt
= rWW (1− W

KW
) + a31UW + a32VW,

(1)

where all parameters are nonnegative real constants. In the absence of other species,
each species follows the traditional logistic population growth with birth rates, rU ,
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Figure 1. The diagram of Three species intraguild predator mod-
els is illustrated and each species has its own nutrient resource.

rV , rW , and environmental carrying capacities, KU , KV , KW , for the species U , V ,
W , respectively. And the nonlinear interactions between species are Lotka-Volterra
type with omnivory which means the top predator (intraguild-predator)W are feed-
ing on two resources, intraguild-prey V and prey U [6]. Biologically, we assume that
all coefficients of interactions aij are non-negative and aij is the rate of consumption
for i < j or measures the contribution of the victim (resource or prey) to the growth
of the consumer for i > j [10].

System (1) can be regarded as a food-chain model, a two predators-one prey
model or a two preys-one predator model when a13 = a31 = 0, a23 = a32 = 0 or
a12 = a21 = 0, respectively. Please refer Figure 1. It is well known that system
(1) blends the attributes of several well-studied community modules, such as food
chains, exploitative competition (two predators-one prey) and apparent competition
(one predator-two preys) [6]. The most important feature of system (1) is involved
omnivory which are believed that this property is crucial to to the stability of food
web structure and its global dynamics.

Re-examine previous known three species food web model with omnivory [6, 12,
13, 8, 7], for the intermediate predator (intraguild prey) there is only one nutrient
resource from the basal prey. However, in system (1) each species has its own nu-
trient resource governed by the logistic growth terms. Moreover, they affect each
other weakly by the nonlinear terms. So system (1) can be seen as a type of three
species food web system with diversity of food resources and weakly effects to each
others. We think that these features appear in some situations. Our main purpose
of this work is to answer what is the best strategy for each species to survive and
what is the condition of uniform persistence for the whole system.

The rest of the paper is organized as follows. In Section 2, we first show the
boundedness of solutions of (1). Then local stability of all boundary equilibria are
investigated by the linear method. Moreover, global dynamics of some boundary
equilibria are showed by the methods of Lyapunov and Butler-McGehee Lemma.
Next, with assumption (A) we classify all parameters to investigate the existence
of positive equilibrium and its local dynamics numerically. In the final section,
numerical evidences are presented, and some biological discussions and implications
are given.
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2. Existence and Stability of Boundary Equilibria. In this section, we first
rescale the model and show the boundedness and positivity of solution of (1). Sec-
ondly, all boundary equilibria are found and their local stabilities are established by
linear method. Then some global dynamics are investigated by differential inequal-
ities coupling with LaSalle’s invariant principle and McGehee Lemma. Finally, we
summarize a table which could completely classify all dynamics by the parameters.

To simplify the arguments, we apply the following scaling transformation to (1),

x = U/KU , y = a12V/rU , z = a13W/rU ,

rx = rU , ry = rV , rz = rW ,

a =
a21KU

rV
, b =

rU
a12KV

, c =
a23rU
a13rV

,

d =
a31KU

rW
, e =

a32rU
a12rW

, and f =
rU

a13KW
.

(2)

then we obtain a simplified ODE model,

dx

dt
= rxx(1− x− y − z), (3a)

dy

dt
= ryy(1 + ax− by − cz), (3b)

dz

dt
= rzz(1 + dx+ ey − fz). (3c)

Lemma 2.1. Solutions of (3) with nonnegative (positive) initial conditions are
nonnegative (positive). Moreover, all solutions of (3) are bounded.

Proof. By Theorem 3 in [9], we know that solutions of (3) is bounded. It is also easy
to see that x-axis, y-axis, z-axis, xy-plane, xz-plane, and yz-plane are invariant sub-
spaces of (3). Hence, one can easily show that solutions with nonnegative (positive)
initial conditions are nonnegative (positive) by the uniqueness of solutions.

Throughout this work, we always assume that

(A): rU > a12KV or b > 1.

Assumption (A) is actually a biological restriction which means that species U can
sustain the negative effect with maximal amount of species V . Since it is easy to
see that if assumption (A) does not hold then species U will die out eventually
in the two-dimensional subsystem without species W . So this hypothesis can keep
interest and complexity of system (3).

2.1. Existence of Boundary Equilibria and its Local Stability. In this sub-
section, we will find all corresponding conditions to establish the existence of bound-
ary equilibria and their local stabilities.
By direct computations, we have the Jacobian matrix of system (3) is given by

J(x, y, z) =

 rx(1− 2x− y − z) −rxx −rxx
aryy ry(1 + ax− 2by − cz) −cryy
drzz erzz rz(1 + dx+ ey − 2fz)

 .

All boundary equilibria can be easily found and their Jacobian matrix are considered
as follows.
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(a) E0 = (0, 0, 0). It is clear that

J(E0) =

 rx 0 0
0 ry 0
0 0 rz

 .

All eigenvalues of J(E0) are positive and hence E0 is expansive.
(b) Ex = (1, 0, 0). By direct computations, we have that

J(Ex) =

 −rx −rx −rx
0 ry(1 + a) 0
0 0 rz(1 + d)

 .

The matrix J(Ex) has two positive eigenvalues and one negative eigenvalue. Clearly,
Ex is a saddle with one-dimensional stable manifold, the interior of the x-axis and
two-dimensional unstable manifold with one tangent vector on the x-y plane and
another one on the x-z plane.

(c) Ey = (0, 1
b , 0). Direct computations imply that

J(Ey) =

 rx(1− 1
b ) 0 0

ary
b −ry

−cry
b

0 0 rz(1 +
e
b )

 .

Since b > 1, the matrix J(Ey) has two positive eigenvalues and one negative ei-
genvalue. It follows that Ey is a saddle with one-dimensional stable manifold, the
interior of the y-axis and two-dimensional unstable manifold with one tangent vec-
tor on the x-y plane and another one on the y-z plane.

(d) Ez = (0, 0, 1
f ). It is easy to check that

J(Ez) =

 rx(1− 1
f ) 0 0

0 ry(1− c
f ) 0

drz
f

erz
f −rz

 .

By the ordering of 1, c, and f , we state local stability of Ez and omit the proof.

(i) If f < 1 and f < c, then J(Ez) has three negative eigenvalues and it follows
that Ez is stable;

(ii) if f > 1 and f < c, then it is saddle with one-dimensional unstable man-
ifold with tangent vectors which are non-zero in the x coordinate and two-
dimensional stable manifold, the interior of the y-z plane;

(iii) if f < 1 and f > c, then it is saddle with one-dimensional unstable man-
ifold with tangent vectors which are non-zero in the y coordinate and two-
dimensional stable manifold, the interior of the x-z plane;

(iv) if f > 1 and f > c, Ez is a saddle with one-dimensional stable manifold the
interior of the z-axis and two-dimensional unstable manifold with one tangent
vector on the x-z plane and another one on the y-z plane.

(e) Exy = ( b−1
a+b ,

a+1
a+b , 0). Let ρ = b−1

a+b , then 1− ρ = a+1
a+b . One can easily verify that

J(Exy) is of the following form −rxρ −rxρ −rxρ
ary(1− ρ) ry[1 + aρ− 2b(1− ρ)] −cry(1− ρ)

0 0 rz[1 + dρ+ e(1− ρ)]

 . (4)
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Since b > 1, the equilibrium Exy exists. It is clear that J(Exy) has at least one
positive eigenvalue rz[1 + dρ+ e(1− ρ)]. Consider another two eigenvalues, λ2 and
λ3, of (4). They are actually the eigenvalues of the up-left 2× 2 submatrix of (4).
By direct computations, we obtain

λ2λ3 = rxryρ(1 + a) > 0,

λ2 + λ3 = −rxρ− ryb(1− ρ) < 0.

Hence it is saddle with one-dimensional unstable manifold with tangent vectors
which are non-zero in the z coordinate and two-dimensional stable manifold, the
interior of the x-y plane.

(f) Exz = ( f−1
d+f , 0,

d+1
d+f ). Let σ = f−1

d+f , then 1 − σ = d+1
d+f . One can easily verify

that J(Exz) is of the following form −rxσ −rxσ −rxσ
0 ry[1 + aσ − c(1− σ)] 0

drz(1− σ) erz(1− σ) −frz(1− σ)

 . (5)

The equilibrium Exz can exist only if f > 1. Clearly, J(Exz) has one eigenvalue

λ1 = ry[1+aσ− c(1−σ)] = ry(
af−cd−a−c+d+f

d+f ). Consider another two eigenvalues,

λ2 and λ3, of (5). They are actually the eigenvalues of the 2 × 2 submatrix of (5)
by removing the second column and the second row. By direct computations, we
have

λ2λ3 = rxrzσ(d+ 1) > 0,

λ2 + λ3 = −rxσ − rzf(1− σ) < 0.

So J(Exz) has at least two negative eigenvalues. Hence, if

af − cd− a− c+ d+ f < 0, (6)

then J(Exz) has three negative eigenvalues and it follows that Exz is stable; and if

af − cd− a− c+ d+ f > 0, (7)

then J(Exz) has one positive eigenvalue and two negative eigenvalues. Similarly,
Exz is saddle with one-dimensional unstable manifold with tangent vectors which
are non-zero in the y coordinate and two-dimensional stable manifold, the interior
of the x-z plane.

(g) Eyz = (0, f−c
bf+ce ,

b+e
bf+ce ). One can easily verify that J(Eyz) is of the following

form  ( bf+ce−b+c−e−f
bf+ce )rx 0 0

ary(
f−c

bf+ce ) −ryb(
f−c

bf+ce ) −cry(
f−c

bf+ce )

drz(
b+e

bf+ce ) erz(
b+e

bf+ce ) −frz(
b+e

bf+ce )

 . (8)

Similarly the equilibrium Eyz can exist only if f > c. Clearly, J(Eyz) has one
eigenvalue

λ1 = (
bf + ce− b+ c− e− f

bf + ce
)rx. (9)
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Consider another two eigenvalues, λ2 and λ3, of (8). They are actually the eigen-
values of the low-right 2× 2 submatrix of (8). By direct computations, we obtain

λ2λ3 = ryrz(bf + ce)(
f − c

bf + ce
)(

b+ e

bf + ce
) > 0,

λ2 + λ3 = −ryb(
f − c

bf + ce
)− rzf(

b+ e

bf + ce
) < 0.

Then we have λ2 < 0 and λ3 < 0. Similarly, we find the following condition of
stability for Eyz. If

bf + ce− b+ c− e− f < 0, (10)

then Eyz is stable; and if

bf + ce− b+ c− e− f > 0, (11)

then Eyz is saddle with one-dimensional unstable manifold with tangent vectors
which are non-zero in the x coordinate and two-dimensional stable manifold, the
interior of the y-z plane. Here we summarize all local stability results for boundary
equilibria in the following proposition.

Proposition 1. For system (3), the following statements are true.

(i) The trivial equilibrium E0 is expansive.
(ii) The semi-trivial equilibrium Ex always exists and is a saddle with one-dimensional

stable manifold, the interior of the x-axis and two-dimensional unstable man-
ifold with one tangent vector on the x-y plane and another one on the x-z
plane.

(iii) The semi-trivial equilibrium Ey always exists and is a saddle with one-dimensional
stable manifold, the interior of the y-axis and two-dimensional unstable man-
ifold with one tangent vector on the x-y plane and another one on the y-z
plane.

(iv) The semi-trivial equilibrium Ez always exists. And
(a) if f < 1 and f < c then it is stable;
(b) if f > 1 and f < c, then it is saddle with one-dimensional unstable mani-

fold with tangent vectors which are non-zero in the x coordinate and two-
dimensional stable manifold, the interior of the y-z plane;

(c) if f < 1 and f > c, then it is saddle with one-dimensional unstable mani-
fold with tangent vectors which are non-zero in the y coordinate and two-
dimensional stable manifold, the interior of the x-z plane;

(d) if f > 1 and f > c, it is a saddle with one-dimensional stable manifold
the interior of the z-axis and two-dimensional unstable manifold with one
tangent vector on the x-z plane and another one on the y-z plane.

(v) The boundary equilibrium Exy always exists. Moreover, it is a saddle point
with one-dimensional unstable manifold with tangent vectors which are non-
zero in the z coordinate and two-dimensional stable manifold, the interior of
the x-y plane.

(vi) The boundary equilibrium Exz exists if f > 1 and it is stable if (6) holds. If
(7) holds, then Exz is a saddle with one-dimensional unstable manifold with
tangent vectors which are non-zero in the y coordinate and two-dimensional
stable manifold, the interior of the x-z plane.

(vii) The boundary equilibrium Eyz exists if f > c and it is stable if (10) holds.
Otherwise, if (11) holds, then Eyz is a saddle with one-dimensional unstable
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manifold with tangent vectors which are non-zero in the x coordinate and two-
dimensional stable manifold, the interior of the y-z plane.

2.2. Global Dynamics of Boundary Equilibria. In this subsection, we inves-
tigate some global dynamics of boundary equilibria. By the foregoing subsection,
we have the following conclusions: E0, Ex, Ey and Exy are unstable. So we will
consider the other boundary equilibria, Ez, Exz and Eyz. For reader’s convenience,
in Table 1 we present all local and global dynamics which will be investigated in
Section 2 and Section 3.

First, we classify all parameters into two main categories, c < 1 and c > 1.
Biologically, the parameter c = a23rU/(a13rV ) < 1 can be rewritten as the form

rU
a13

<
rV
a23

, (12)

which means that the species x is inferior to the species y in apparent competition
[4]. By Proposition 1, we may further classify all parameters by the ordering of f ,
c and 1. Hence generically we consider the following six sub-cases:
(B)-1 f < c < 1,
(B)-2 c < f < 1,
(B)-3 c < 1 < f,
and
(C)-1 f < 1 < c,
(C)-2 1 < f < c,
(C)-3 1 < c < f.

By the result (iv) of Proposition 1, Ez is stable if f < min{1, c}. Actually, we can
further show that it is globally asymptotically stable. This also clarify the global
dynamics of cases (B)-1 and (C)-1. It is clear that Ez is unstable for all other
cases. Please refer “Ez” column of Table 1.

Proposition 2. If f < min{1, c} which is equivalent to cases of (B)-1 and (C)-1,
then

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0,

and Ez is globally asymptotically stable.

Proof. By (3c), we have

dz

dt
= rzz(1− fz) + rzdxz + rzeyz ≥ rzz(1− fz).

Let z(t) be the solution of the differential equation

dz

dt
= rzz(1−

z

1/f
)

with the same initial condition of z(t). Then we have the following facts:

z(t) ≥ z(t) for all t > 0 and lim
t→∞

z(t) =
1

f
.

So for any ε > 0, we can find a T > 0 such that z(t) ≥ 1
f − ε whenever t > T .
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Take ε = 1
2 (

1
f − 1) > 0. By (3a), we have

1

rxx

dx

dt
= (1− x)− y − z ≤ 1− z

≤ 1− 1

f
+ ε

= (1− 1

f
) +

1

2
(
1

f
− 1) < 0

for all t > T . Then x(t) converges to 0 as t tends to infinity. Finally, we consider
the differential equation (3b):

dy

dt
= ryy(1− by) + ryaxy − rycyz.

Take ε = 1
2 (

1
f − 1

c ) > 0, then we can find a T > 0 such that x(t) < 1
4a (

c
f − 1) and

z(t) > 1
f − ε for t ≥ T . Then

1

ryy

dy

dt
= (1− by) + ax− cz

≤ 1 + ax− cz

≤ 1 + ax− c

f
+ cε

= 1 + ax− c

f
+

1

2
(
c

f
− 1)

=
1

2
(1− c

f
) + ax <

1

4
(1− c

f
) < 0

for all t > T . So y(t) converges to 0 as t tends to infinity. Hence we can conclude
that Ez is globally asymptotically stable in the positive sector.

Biologically, the conditions

f =
rU

a13KW
< 1 and f =

rU
a13KW

< c =
a23rU
a13rV

can be rewritten as the form

rU < a13KW and rV < a23KW ,

which imply that species x and y cannot sustain the negative effect with maximal
amount of species z, then species x and y will become extinct eventually.

Next, we investigate global dynamics of equilibrium Exz. The equilibrium Exz

can exist only if f = rU/(a13KW ) > 1. This can be seen that the species x can
stand the exploitation of maximal amount of the species z. So this clarifies the
cases of (B)-1, (B)-2, and (C)-1. Furthermore, by the foregoing discussion, the
Jacobian matrix J(Exz) has two negative eigenvalues and one eigenvalue,

λ = ry(
af − cd− a− c+ d+ f

d+ f
).

The following lemma says that equilibrium Exz is always saddle in the case of (B)-3.

Lemma 2.2. In the case of (B)-3, the inequality af − cd − a − c + d + f > 0 is
always true, that is, (7) holds.
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The quantity af−cd−a−c+d+f = a(f−1)+(f−c)+d(1−c) > 0, since c < 1 < f .

However, it follows that Exz is stable if (6) holds. Consequently, we have the
following global result which clarify partial global dynamics of cases (C)-2 and
(C)-3. The complete dynamics of Exz can be found in the column Exz of Table 1.

Proposition 3. For cases (C)-2 and (C)-3, assume that

af − cd+ d+ f < 0, (13)

then Exz is globally asymptotically stable.

Proof. Assumption (13) is equivalent to (1 + a)/d < (c− 1)/f . Hence we can take
a positive number k such that (1 + a)/d < k < (c− 1)/f . Then consider

ẏ

ryy
− ẋ

rxx
− k

ż

rzz
≤ −k + (1 + a− kd)x+ (1− c+ kf)z

≤ −k < 0.

Therefore we have limt→∞ y(t) = 0. Asymptotically, system (3) will approach the
following two-dimensional subsystem,

dx

dt
= rxx(1− x− z),

dz

dt
= rzz(1 + dx− fz).

(14)

If we can show equilibrium Exz is GAS in the x-z plane, then we conclude that Exz

is GAS in the positive octant of R3.
Let Exz = (x̄, z̄) be the positive equilibrium, that is ,

1 = x̄+ z̄, and 1 = −dx̄+ fz̄.

Consider the Lyapunov function

L(x(t), z(t)) =
1

rx

∫ x(t)

x(0)

η − x̄

η
dη +

1

rzd

∫ z(t)

z(0)

η − z̄

η
dη

and by computation we obtain

d

dt
L(x(t), z(t)) = −(x− x̄)2 − f

d
(z − z̄)2 ≤ 0.

Then by LaSalle Invariant Principle, we can get that Exz is GAS in x-z plane. This
completes the proof.

Remark 1. It is clear that (13) is a sufficient condition of (6).

For equilibrium Eyz = (0, f−c
bf+ce ,

b+e
bf+ce ), it can exist only if f > c. So in cases of

(B)-1, (C)-1 and (C)-2, Eyz does not exist. It is easy to see that the inequality
f > c is equivalent to

rV > a23KW .

Similarly, this inequality suggests that the species y can sustain the exploitation of
maximal amount of the species z. If the equilibrium Eyz exists, then its Jacobian
matrix J(Eyz) has two negative eigenvalues and one eigenvalue,

λ = rx(
bf + ce− b+ c− e− f

bf + ce
).

The following lemma says that equilibrium Eyz is always saddle in the case of (C)-3.
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Lemma 2.3. In the case of (C)-3, the inequality bf + ce − b + c − e − f > 0 is
always true, that is, (11) holds.

If bf + ce− b+ c− e− f ≤ 0 then c ≤ e+(b+f−bf)
e+1 which implies b+ f − bf > 1

because of c > 1. But b + f − bf > 1 implies that b < 1 which contradicts to
assumption (A).
In the case of (B)-2, we always have

bf + ce− b+ c− e− f = b(f − 1) + e(c− 1) + (c− f) < 0,

and this implies Eyz is stable. Moreover, we can prove the following global behavior.

Proposition 4. In the case of (B)-2, we can obtain

lim
t→∞

x(t) = 0

and equilibrium Eyz is globally asymptotically stable.

Proof. Consider

ẋ

rxx
− 1

f

ż

rzz
≤ 1− 1

f
< 0.

So we have limt→∞ x(t) = 0. The following arguments are similar, so we omit them.

In the case of (B)-3, if inequality (10) hold, then the equilibrium Eyz is stable.
Moreover, we have the following global result which clarifies partial dynamics of
(B)-3.

Proposition 5. For case of (B)-3, assume that

bf + ce− b− e < 0, (15)

then Eyz is globally asymptotically stable.

Proof. Assumption (15) is equivalent to c/b+ f/e < 1/b+ 1/e. Hence we can take
a positive number k such that c/b+ f/e < k < 1/b+ 1/e. Then consider

k
ẋ

rxx
− 1

b

ẏ

ryy
− 1

e

ż

rzz
≤ (k − 1

b
− 1

e
)− (k − c

e
− f

e
) < 0.

Therefore we have limt→∞ x(t) = 0. The remaining arguments are similar, so we
omit them.

Remark 2. It is clear that (15) is a sufficient condition of (10).

Finally, we summarise all results in Table 1.

3. Existence of Positive Equilibrium and Uniform Persistence. In this sec-
tion, we first find the necessary and sufficient conditions to guarantee the existence
of positive equilibrium E∗ = (x∗, y∗, z∗). Then the condition of local stability of
E∗ is presented by the Routh-Hurwitz Criterion. Although we cannot show the
globally asymptotically stability of E∗ analytically, we can verify the system (3) is
uniformly persistent when E∗ exists.

In cases of (B)-1, (B)-2 and (C)-1, the global dynamics of (3) is classified in
Section 2. So it is easy to see that E∗ does not exist in this three cases (Please
refer Table 1). Therefore, we investigate the other cases in this section. To find
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Table 1. Existence and dynamics of equilibria by the classi-
fications. The notations “U” means unstable, “∄” means non-
existence of equilibrium, “∃” means existence of equilibrium,
and “GAS” means globally asymptotically stable.

b > 1 E0, Ex, Ey, Exy Ez Exz Eyz E∗

(B)-1 : f < c < 1 U GAS ∄ ∄ ∄
(B)-2 : c < f < 1 U U ∄ GAS ∄
(B)-3 : c < 1 < f

bf + ce− b+ c− e− f < 0 U U U GAS* ∄
bf + ce− b+ c− e− f > 0 U U U U ∃

(C)-1 : f < 1 < c U GAS ∄ ∄ ∄
(C)-2 : 1 < f < c

af − cd− a− c+ d+ f > 0 U U U ∄ ∃
af − cd− a− c+ d+ f < 0 U U GAS⋄ ∄ ∄

(C)-3 : 1 < c < f
af − cd− a− c+ d+ f > 0 U U U U ∃
af − cd− a− c+ d+ f < 0 U U GAS⋄ U ∄

* With assumption bf + ce− b− e < 0
⋄ With assumption af − cd+ d+ f < 0

positive equilibrium E∗ = (x∗, y∗, z∗) is equivalent to find the solution (x∗, y∗, z∗)
of the linear system , 

x+ y + z = 1,

ax− by − cz = −1,

dx+ ey − fz = −1,

(16)

with 0 < x∗, y∗, z∗ < 1. Here are the necessary and sufficient conditions for the
existence of the positive equilibrium E∗.

Proposition 6. Let assumption (A) hold. The coexistence equilibrium E∗ exists if
and only if (7) and (11) hold.

Proof. Assume that the positive equilibrium E∗ = (x∗, y∗, z∗) exists, that is, there
are three positive real numbers, x∗, y∗ and z∗, less than 1 and satisfying (16).
By straightforward computation of system (16), we get the explicit formulations of
solution (x∗, y∗, z∗),

x∗ = (bf + ce− b+ c− e− f)/(ae+ af + bd+ bf − cd+ ce), (17a)

y∗ = (af − cd− a− c+ d+ f)/(ae+ af + bd+ bf − cd+ ce), (17b)

z∗ = (ae+ bd+ a+ b− d+ e)/(ae+ af + bd+ bf − cd+ ce). (17c)

Since z∗ > 0 and ae + bd + a + b− d+ e = ae + d(b − 1) + a + b + e > 0, we have
ae+af+bd+bf−cd+ce > 0 by (17c). Therefore we also have bf+ce−b+c−e−f > 0
and af − cd− a− c+ d+ f > 0, that is, (7) and (11) hold. We complete the proof
of this implication.
For the other implication, we assume that (7) and (11) hold, that is, bf + ce− b+
c−e−f > 0 and af −cd−a−c+d+f > 0. Then by adding these two inequalities,
we obtain

af + bf + ce− cd > a+ b− d+ e. (18)
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Consider the determinant of the linear system (16),∣∣∣∣∣∣
1 1 1
a −b −c
d e −f

∣∣∣∣∣∣ = af + bf + ce− cd+ bd+ ae > a+ b− d+ e+ bd+ ae > 0

by assumption (A). So the solution of system (16) exists, and has the form

x∗ = (bf + ce− b+ c− e− f)/(ae+ af + bd+ bf − cd+ ce),

y∗ = (af − cd− a− c+ d+ f)/(ae+ af + bd+ bf − cd+ ce),

z∗ = (ae+ bd+ a+ b− d+ e)/(ae+ af + bd+ bf − cd+ ce).

Finally, it can clearly be seen that 0 < x∗, y∗, z∗ < 1. This show the existence of
E∗. We complete the proof.
Remark 3.

(i) In case of (B)-3 with inequality (11), by Lemma 2.2 the inequality (7) is true.
Hence E∗ exists.

(ii) In case of (C)-2 with inequality (7), if (11) does not hold, that is, bf + ce−
f + c − b − e ≤ 0 then b(f − 1) ≤ e(1 − c) + f − c < 0 which contradicts to
(C)-2, 1 < f < c. Hence E∗ exists.

(iii) In case of (C)-3 with inequality (7), by Lemma 2.3 the inequality (11) is true.
Hence E∗ exists. We summarize the existence results of E∗ in the column
“E∗” of Table 1.

(iv) The local stability of E∗ can be verified by Routh-Hurwitz criterion. The
computations are tedious, so we put it in the Appendix. By observing the
form, it suggests that E∗ is stable whenever it exists. But we cannot prove
that. Some numerical simulations are discussed in the last section.

Finally, we can obtain the following uniform persistence of solutions for system
(3).

Proposition 7. Let assumptions (A) hold. If the positive equilibrium E∗ exists,
then system (3) is uniformly persistent.

Proof. To show this proposition, we need to consider the following three cases,

(i) (B)-3 and (11),
(ii) (C)-2 and (7),
(iii) (C)-3 and (7).

Please refer Table 1. The method is similar, so we only investigate case (i). It is
easy to check that system (3) is persistent by the results of [3]. Our strategy is to
use the main results in [1, 2] to verify the uniform persistence of (3). It is sufficient
to show that the boundary of the first octant for the solution of (3) is isolated and
acyclic.

Under assumptions (A), (B)-3 and (11), the isolated invariant sets of solutions
on the boundary are {E0, Ex, Ey, Ez, Exy, Exz, Eyz}. All possible chain from
E0 to other semi-trivial equilibria can been found for six cases :

1. E0 → Ex → Exy;
2. E0 → Ex → Exz;
3. E0 → Ey → Exy;
4. E0 → Ey → Eyz;
5. E0 → Ez → Exz;
6. E0 → Ez → Eyz.
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We only consider the first case, and the other cases are similar. If E0 → Ex → Exy

happens, then it is clear that Exy can not be chained to E0 or Ex by Proposition 1
(v). Thus, the set of equilibria,

{E0, Ex, Ey, Ez, Exy, Exz, Eyz},

on the boundary is acyclic and the system (3) is uniformly persistent.

4. Discussions. In this work, we consider the community of three species food
web model with Lotka-Volterra type predator-prey interaction. Each species has its
own nutrient resource governed by the traditional logistical growth. And they affect
each other by the interplay of competition and predation. In particular, the top
predator is an omnivore which is defined as feeding on the other two species. With
a mild biological restriction (A) we have classified all parameters and investigated
their corresponding dynamics which are summerized in Table 1.

First, in case (B)-1 and case (C)-1, we showed that species U and V die out and
W survives. Since the inequalities f < 1 and f < c represent that species U and V
cannot stand the exploitation by species W in the following equivalent forms,

rU < a13KW and rV < a23KW ,

respectively. Hence Ez is globally asymptotically stable.

In Section 2, we have classified all parameters into two main categories, c < 1
and c > 1. Biologically, the parameter c = a23rU/(a13rV ) can be rewritten as the
form

rU
a13

/(
rV
a23

),

where the ratio rU/a13 means the birth-rate of U overs consuming rate a13 by preda-
tor W and the ratio rV /a23 means the birth-rate of V overs consuming rate a23 by
predator W . Hence assumption c < 1(c > 1) can be interpreted that species U is
inferior (superior) to species V under the apparent competition [4]. So in the cat-
egory (B), any equilibrium involved species U is unstable or does not exist except
for the case of (B)-3 with (11). Similarly, in the category (C), any equilibrium
involved species V is unstable or does not exist except for the cases (C)-2 and
(C)-3) with (7). This three exceptions are exactly cases where E∗ exists and the
system uniformly persists. We will discuss in more detail later.

Next, in case (B)-2, we showed that species U dies out, and V , W survives, since
V can sustain the exploitation by W , because of f > c (rV > a23KW ). In addition,
species U lost the apparent competition. Hence we have the globally asymptotical
stability of Eyz.

Let us discuss the most interesting and complex cases, (B)-3, (C)-2 and (C)-3.
In the case of (B)-3, that is c < 1 < f , inequalities f > c and f > 1 imply that
species U and species V can sustain the exploitation of maximal amount of species
W , respectively. But c < 1 means that species U is inferior to species V in apparent
competition. How does species U survive? The inequality (7) can be rewritten as
the form,

0 < bf + ce− b+ c− e− f = b(f − 1) + e(c− 1) + (c− f).
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In right hand side, the only positive term is b(f − 1). So the only possibility to
make (7) true if b = rU/(a12KV ) is large enough. Either species U take r-strategy
or the amount of species V is small. So in the case of (B)-3 with (7), species U
can survive and E∗ exists.

For the case of (C)-2, that is 1 < f < c, inequalities f > 1 and f < c represent
that species U can sustain the exploitation of maximal amount of species z, but
species y cannot. Moreover, the inequality c > 1 means species V lost the apparent
competition. Similarly, how does species V survive? The inequality (11) can be
rewritten as the form,

0 < af − cd− a− c+ d+ f = a(f − 1) + d(1− c) + (f − c). (19)

In right hand side, the only positive term is a(f − 1). The only possibility to make
(11) true if a = a21KU/rV is large enough. The possible strategy for species V to
survive is to improve the efficiency of consuming species U . Hence in the case of
(C)-2 with (11), species V can survive and E∗ exists.

For the case of (C)-3, that is 1 < c < f , species U and species V can stand
the exploitation of maximal amount of species W , but species V lost the apparent
competition. Similarly, in the right hand side of (19), there are two positive terms,
a(f − 1) and (f − c). There are possible strategies for species V . One is to improve
the efficiency of consuming species U , and another one is r-strategy.

Finally, we try to answer the questions which we propose, what is the best strategy
for each species to survive and what is the condition of uniform persistence for the
whole system. For species U , to survive in any cases discussed above is r-strategy.
And for species V the best strategy is to improve the efficiency of consuming rate.

Appendix. In this appendix, we investigate the local stability of the coexistence
equilibrium E∗. The Jacobian matrix evaluated at E∗ = (x∗, y∗, z∗) is

J(x∗, y∗, z∗) =

 −rxx∗ −rxx∗ −rxx∗
aryy∗ −bryy∗ −cryy∗
drzz∗ erzz∗ −frzz∗

 .

By direct computations, the characteristic polynomial of J(x∗, y∗, z∗) is

P (λ) = λ3 + (bryy∗ + frzz∗ + rxx∗)λ
2 + (bfryrzy∗z∗ + ceryrzy∗z∗ + arxryx∗y∗+

brxryx∗y∗ + drxrzx∗z∗ + frxrzx∗z∗)λ+ rxryrzx∗y∗z∗(ae+ af + bd+ bf − cd+ ce).

Using the Routh-Hurwitz Criterion, we obtain that all roots have negative real part
if and only if the following three conditions hold:

1. bryy∗ + frzz∗ + rxx∗ > 0,
2. rxryrzx∗y∗z∗(ae+ af + bd+ bf − cd+ ce) > 0,
3. b2fr2yrzy

2
∗z∗+bcer2yrzy

2
∗z∗+bf2ryr

2
zy∗z

2
∗+cefryr

2
zy∗z

2
∗+abrxr

2
yx∗y

2
∗+b2rxr

2
yx∗y

2
∗+

dfrxr
2
zx∗z

2
∗+f2rxr

2
zx∗z

2
∗+ar2xryx

2
∗y∗+br2xryx

2
∗y∗+dr2xrz ∗x2

∗z∗+fr2xrzx
2
∗z∗+

(2bf + cd− ae)rxryrzx∗y∗z∗ > 0.

It is clear that condition 1 and 2 of the Routh-Hurwitz Criterion are always true,
if the coexistence equilibrium E∗ exists. The Condition 3 are also verified nu-
merically by the following algorithm and we find that the condition 3 is also true
for all the discrete value of parameters with b = 1.1 to 10.0 and others from 0.1
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to 10.0 with step-size 0.1. So we conjecture that E∗ is stable whenever it exists.

Algorithm 1: Evaluate condition 3 of the Routh-Hurwitz Criterion

for b = 1.1, · · · , 10 (stepsize 0.1) do
for a, c, d, e, f, rx, ry, rz = 0.1, · · · , 10 (stepsize 0.1) do

if (7) and (11) hold then
Evaluate condition 3 of the Routh-Hurwitz Criterion

end

end

end
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