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ABSTRACT 

The action potential of nerve and muscle is produced by voltage sensitive 

channels that include a specialized device to sense voltage. The voltage sensor 

depends on the movement of charges in the changing electric field, as suggested 

by Hodgkin and Huxley. Gating currents of the voltage sensor are now known to 

depend on the movements of positively charged arginines through the 

hydrophobic plug of a voltage sensor domain. Transient movements of these 

permanently charged arginines, caused by the change of transmembrane 

potential V, further drag the S4 segment and induce opening/closing of ion 

conduction pore by moving the S4-S5 linker. This moving permanent charge induces 

capacitive current flow everywhere. Everything interacts with everything else in the 

voltage sensor and protein so it must also happen in its mathematical model. A 

PNP-steric model of arginines and a mechanical model for the S4 segment are 

combined using energy variational methods in which all densities and movements of 

charge satisfy conservation laws, which are expressed as partial differential equations 

in space and time. The model computes gating current flowing in the baths produced 

by arginines moving in the voltage sensor. The model also captures the capacitive pile 

up of ions in the vestibules that link the bulk solution to the hydrophobic plug. Our 

model reproduces signature properties of gating current: (1) equality of ON and OFF 

charge Q in integrals of gating current (2) saturating voltage dependence in QV curve 

and (3) many (but not all) details of the shape of gating current as a function of 

voltage. Our results agree qualitatively with experiments, and can be improved by 

adding more details of the structure and its correlated movements. The proposed 

continuum model is a promising tool to explore the dynamics and mechanism of 

the voltage sensor.  

 

Keywords: ion channel; voltage sensor; gating current; arginine; S4; PNP-steric 

model 
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INTRODUCTION 

Much of biology depends on the voltage across cell membranes. The voltage 

across the membrane must be sensed before it can be used by proteins Permanent 

charges1 move in the strong electric fields within membranes, so carriers of sensing 

charge were proposed as voltage sensors even before membrane proteins were known 

to span lipid membranes [1]. Movement of permanent charges of the voltage sensor is 

gating current and movement is the voltage sensing mechanism.  

Knowledge of membrane protein structure has allowed us to identify and look 

at the atoms that make up the voltage sensor. Protein structures do not include the 

membrane potentials and macroscopic concentrations that power gating currents, and 

therefore simulations are needed. Atomic level simulations like molecular dynamics 

do not provide an easy extension from the atomic time scale ~10-15 sec to the 

biological time scale of gating currents that starts at ~10-6 sec and reaches ~10-2 sec. 

Calculations of gating currents from simulations must average the trajectories (lasting 

~10-1 sec sampled every 10-15 sec) of ~106 atoms all of which interact through the 

electric field to conserve charge and current, while conserving mass. It is difficult to 

enforce continuity of current flow in simulations of atomic dynamics because 

simulations compute only local behavior while continuity of current is global, 

involving current flow far from the atoms that control the local behavior. It is 

impossible to enforce continuity of current flow in calculations that assume 

equilibrium (zero net flow) under all conditions.  

 A hybrid approach is needed, starting with the essential knowledge of structure, 

but computing only those parts of the structure used by biology to sense voltage. In 

close packed (‘condensed’) systems like the voltage sensor, or ionic solutions, 

‘everything interacts with everything else’ because electric fields are long ranged as 

well as exceedingly strong [2]. In ionic solutions, ion channels, even in enzyme active 

sites, steric interactions that prevent the overfilling of space in well-defined protein 

structures are also of great importance as they produce short range correlations [3].  

 Closely packed charged systems are well handled mathematically by energy 

variational methods. Energy variational methods guarantee that all variables satisfy all 

equations (and boundary conditions) at all times and under all conditions and are thus 

always consistent. We use the energy variational approach developed in [4] and [5] to 

derive a consistent model of gating charge movement, based on the basic features of 

                                                 
1 Permanent charge is our name for a charge or charge density independent of the local electric field, for 

example, the charge and charge distribution of Na+ but not the charge in an highly polarizable anion like Br or 

the nonuniform charge distribution of H2O in the liquid state with its complex time dependent (and 

perhaps nonlinear) polarization response to the local electric field. 
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the structure of crystallized voltage sensitive channels. A schematic of the model is 

shown below. The continuum model we use simulates the mechanical dynamics in a 

single voltage sensor, while the experimental data is from many independent voltage 

sensors. Ensemble averages of independent voltage sensors recording is equivalent to 

macroscopic continuum modeling in a single voltage sensor, if correlations are 

captured correctly in the model of the single voltage sensor.  

THEORY: MATHEMATICAL MODEL 

The reduced mechanical model for a voltage sensor is shown in Fig. 1(a) with 

four arginines Ri, i=1, 2, 3, 4, each attached to the S4 helix by identical springs with 

the same spring constant K. The electric field will drag these four arginines since each 

arginine carries +1 charge. The charged arginines can also move as a group. S4 

connect to S3 and S5 at its two ends by identical springs with spring constant KS4/2.  

Once the membrane is depolarized from say 90mV inside negative, to +10mV 

inside positive, arginines together with S4 will be driven towards the extracellular side. 

A repolarization from +10mV volts to 90mV, move the arginines back to the 

intracellular side. This movement is the basic voltage sensing mechanism. The 

movement of S4 triggers the opening or closing of the lower gate—consisting mainly 

of S6 forming the ion permeation channel—by a mechanism widely assumed to be 

mechanical, although electrical aspects of the linker motion are likely to be involved, 

as well.  

When arginines are driven by electric field, they are forced to move through a 

hydrophobic plug, composed by several nonpolar amino acids from S1, S2 and S3 [6]. 

Arginines reside initially in the hydrated lumen of the intracellular vestibule. They 

then move though the hydrophobic plug, and wind up in the vestibule on extracellular 

side. This movement involves dehydration when the arginines move through the 

hydrophobic plug, where the arginines encounter a barrier in the potential of mean 

force (PMF) mainly dominated by the difference of the solvation energy in bulk 

situation and in the hydrophobic plug [7]. Note that Na+ and Cl (which are the only 

ions in the bulk solution in this paper, for simplicity) are found only in vestibules and 

are not allowed into the hydrophobic plug in our model. The ends of the two 

vestibules on each side of the system act as impermeable walls for Na+ and Cl in our 

model. When the voltage is turned on and off, these two walls store/release charge 

(carried by ions) in their electric double layers (EDL) that have many of the properties 

of capacitors.  

In the present continuum model, the four arginines Ri, i=1, 2, 3, 4, are described 

by their individual density distributions (concentrations) ci, i=1, 2, 3, 4, allowing the 

arginines to interact with Na+ and Cl in vestibules. The density (i.e., concentration) 



4 

distributions represent probability density functions as shown explicitly in the theory 

of stochastic processes, used to derive such equations in [8] using the general methods 

of [9]. The important issue here is how well the correlations are captured in the 

continuum model. Some are more likely to be faithfully captured in molecular 

dynamics simulations (e.g., more or less local hard sphere interactions), others in 

continuum models (e.g., correlations induced by far field boundary conditions like the 

potentials imposed by bath electrodes to maintain a voltage clamp).  

Here we treat the S4 itself as a rigid body so we can capture the basic mechanism 

of a voltage sensor without considering the full details of structure, which might lead 

to a three dimensional model difficult to compute in reasonable time. We construct an 

axisymmetric 1D model with a three-zone geometric configuration illustrated in Fig. 

1(b) following Fig. 1(a). Zone 1 with 𝑧 ∈ [0, 𝐿𝑅] is the intracellular vestibule; zone 2 

with 𝑧 ∈ [𝐿𝑅 , 𝐿𝑅 + 𝐿] is the hydrophobic plug; zone 3 with 𝑧 ∈ [𝐿𝑅 + 𝐿, 2𝐿𝑅 + 𝐿] is 

the extracellular vestibule. Arginines, Na+, and Cl can all reside in zone 1 and 3. 

Zone 2 only allows the residence of arginines, albeit with a severe hydrophobic 

penalty because of their permanent charge, in a region of low dielectric coefficient 

hence called hydrophobic.  

Based on Fig. 1(b), the governing 1D dimensionless PNP-steric equations are 

expressed below with the detailed non-dimensionalization process shown in Section 1 

of supplementary information. The first one is Poisson equation that shows how 

charge creates potential: 

−
1

𝐴

𝑑

𝑑𝑧
(Γ𝐴

𝑑𝜙

𝑑𝑧
) = ∑ 𝑧𝑖𝑐𝑖

𝑁
𝑖=1 ,          𝑖 = Na, Cl, 1, 2, 3, 4,         (1) 

with 𝑧𝑁𝑎 = 1,  𝑧𝐶𝑙 = −1,  𝑧𝑖 =  𝑧𝑎𝑟𝑔 = 1, 𝑖 = 1, 2, 3, 4, Γ =
𝜆𝐷
2

𝑅2
 and A(z) being the 

cross-sectional area. For zones 1 and 3, Γ = 1 since here the arginines are fully 

hydrated with 𝜀𝑟 = 80. For zone 2, we assume a hydrophobic environment with 𝜀𝑟 =

8, and therefore Γ = 0.1. Dielectric constant inside the hydrophobic plug (zone 2) is 

not experimentally available, however the computational result is not sensitive to this 

value based on our sensitivity analysis.  

The second equation is the species transport equation based on conservation laws: 

𝜕𝑐𝑖

𝜕𝑡
+

1

𝐴

𝜕

𝜕𝑧
(𝐴𝐽𝑖) = 0,         𝑖 = Na, Cl, 1 ,2 , 3, 4.                       (2) 

with the content of Ji expressed below based on Nernst-Planck equation for Na+ and 

Cl-: 

𝐽𝑖 = −𝐷𝑖 (
𝜕𝑐𝑖

𝜕𝑧
+ 𝑐𝑖𝑧𝑖

𝜕𝜙

𝜕𝑧
) ,     𝑖 = Na, Cl,     𝑧 in zone 1 and 3,        (3) 
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and for 4 arginines ci, i=1, 2, 3 and 4, based on Nernst-Planck equation with steric 

effect and some imposed potentials:  

𝐽𝑖 = −𝐷𝑖 (
∂𝐶𝑖

𝜕𝑧
+ 𝑧𝑎𝑟𝑔𝐶𝑖

𝜕𝜙

𝜕𝑧
+ 𝐶𝑖 (

𝜕𝑉𝑖

𝜕𝑧
+

𝜕𝑉𝑏

𝜕𝑧
) + 𝑔𝐶𝑖 ∑

∂𝐶𝑗

𝜕𝑧𝑗≠𝑖 ) , 𝑧 𝑖𝑛 all zones, (4) 

The first and second terms in Eqs. (3,4) describe diffusion and 

electro-migration respectively. The third terms in Eq. (4) are external potential terms 

with Vi, i=1, 2, 3 and 4 being the constraint potential for the 4 arginines ci to S4, 

represented here by a spring connecting each arginine ci to S4, as shown in Fig. 1(a).  

Governing equations Eqs. (1-4) were derived by energy variational methods, that is 

further shown in Section 3 of supplementary information.  

The elastic system is described by 

        𝑉𝑖(𝑧, 𝑡) = 𝐾(𝑧 − (𝑧𝑖 + 𝑍𝑆4(𝑡)))
2,                     (5) 

where K is the spring constant, zi is the fixed anchoring position of the spring for each 

arginine ci on S4, 𝑍𝑆4(𝑡) is the center-of-mass z position of S4 by treating S4 as a rigid 

body. Here, we set z1=0.6, z2=0.2, z3=-0.2, z4=-0.6 using structural information that 

gives the arginine anchoring interval on S4 as 0.4nm. 𝑍𝑆4(𝑡) follows the motion of 

equation based on spring-mass system: 

    𝑚𝑆4
𝑑2𝑍𝑆4

𝑑𝑡2
+ 𝑏𝑆4

𝑑𝑍𝑆4

𝑑𝑡
+ 𝐾𝑆4(𝑍𝑆4 − 𝑍𝑆4,0) = ∑ 𝐾 (𝑧𝑖,𝐶𝑀 − (𝑧𝑖 + 𝑍𝑆4)) ,4

𝑖=1   (6) 

where 𝑚𝑆4, 𝑏𝑆4 and 𝐾𝑆4 are the mass, damping coefficient and restraining spring 

constants for S4. 𝑍𝑆4,0 is the natural (i.e., ‘resting’) position of 𝑍𝑆4(𝑡). Here, 𝑧𝑖,𝐶𝑀 is 

the center of mass for the set of arginines ci , which can be calculated by 

       𝑧𝑖,𝐶𝑀 =
∫ 𝐴(𝑧)𝑧𝑐𝑖𝑑𝑧
𝐿+2𝐿𝑅
0

∫ 𝐴(𝑧)𝑐𝑖𝑑𝑧
𝐿+2𝐿𝑅
0

,  i=1, 2, 3, 4.                            (7) 

We assume that the spring mass system for S4 is over-damped, which means the 

inertia term in Eq. (6) can be neglected.  

The energy barrier 𝑉𝑏 in Eq. (4) is nonzero only in zone 2, which mainly 

represents the difference in solvation energy, chiefly characterized by difference of 

dielectric constants, in the hydrophobic plug and bulk solution. The structure of the 

energy barrier is actually very complicated. Here, we simply assume a hump shape for 

PMF (see more in Section 2 of supplementary information), although we will seek 

greater realism in later work.  

The last term in Eq. (4) is the steric term that accounts for steric interaction 

among arginines [5,10]. Here we set g=0.5, a reasonable value. Though there is 

actually no experimental measurement available for g, the computation results have 

been verified to be insensitive to its value.  
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Here we assume quasi-steady state for Na+ and Cl-, which means 
𝜕𝑐𝑖

𝜕𝑡
= 0, 𝑖 =

𝑁𝑎, Cl, in Eq. (2), and the reason is elaborated in Section 4 of supplementary 

information. The formulation of boundary and interface conditions is also shown in 

Section 5 of supplementary information.  

Besides the main input parameter 𝑉, which is the applied voltage bias 

(corresponding to the command potential in voltage clamp experiments), other 

parameters like Di, i=1, 2, 3, 4, K, KS4, bS4 are also required. Results are especially 

sensitive to the values of K, KS4, bS4. We have tried and found Di=50, i=1,2,3,4, K=3, 

KS4=3, bS4=1.5 provide the best fit to the important experiments reported in [11]. Some 

additional explanation on fitting these parameter values is referred to Section 6 of 

supplementary information. 

Usually the electric current in the ion channel is treated simply as the flux of 

charge and is uniform in the z direction when steady in time. This is not so in the 

present non-steady dynamic situation, since storing and releasing of charge in 

vestibules are involved. Here, the flux of charge at the middle of hydrophobic plug, z= 

LR+L/2, was computed to estimate the experimentally observed gating current. 

However, it is actually impossible (so far) to experimentally measure the current at the 

middle of hydrophobic plug. In experiments, the voltage clamp technique is used, and 

on/off gating current through the membrane is measured, which should be equal to the 

flux of charge at z=0 in the present frame work as shown in Fig. 1(b). The flux of 

charges at any z position 𝐼(𝑧, 𝑡) can be related to the flux of charges at z=0, 𝐼(0, 𝑡), 

simply by charge conservation: 

 
𝜕

𝜕𝑡
𝑄𝑛𝑒𝑡(𝑧, 𝑡) = 𝐼(0, 𝑡) − 𝐼(𝑧, 𝑡),   (8) 

where  

 𝑄𝑛𝑒𝑡(𝑧, 𝑡) = ∫ 𝐴(𝜉) ∑ 𝑧𝑖𝑐𝑖𝑑𝜉,𝑎𝑙𝑙 𝑖
𝑧

0
       (9) 

and flux of charges at any z position 𝐼(𝑧, 𝑡) is defined by 

 𝐼(𝑧, 𝑡) = 𝐴(𝑧)∑ 𝑧𝑖𝐽𝑖(𝑧, 𝑡)𝑎𝑙𝑙 𝑖 .    (10) 

We identify 
𝜕

𝜕𝑡
𝑄𝑛𝑒𝑡(𝑧, 𝑡) as the displacement current, and denote it as 𝐼𝑑𝑖𝑠𝑝(𝑧, 𝑡), 

since Eq. (7) is equivalent to Ampere’s law in Maxwell’s equations, and 
𝜕

𝜕𝑡
𝑄𝑛𝑒𝑡(𝑧, 𝑡) 

is exactly the displacement current in Ampere’s law. The proof is elaborated in 

Section 7 of supplementary information. A general discussion about displacement 

current can be found in [12-14] that does not involve assumptions concerning the 
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dielectric coefficient 𝜀𝑟 or polarization properties of matter at all. Hence, Eq. (8) can 

be simply re-written as 

 𝐼𝑡𝑜𝑡(𝑧, 𝑡) = 𝐼(𝑧, 𝑡) + 𝐼𝑑𝑖𝑠𝑝(𝑧, 𝑡) = 𝐼(0, 𝑡), (11) 

where we define the sum of displacement current and flux of charges as the total 

current 𝐼𝑡𝑜𝑡(𝑧, 𝑡). The z-distribution of the total current should be uniform by 

Kirchhoff’s law, and we verify this by computations shown in the section under 

heading Flux of charges at different locations.  

We are also interested in observing the net charge at vestibules. Consider, for 

example, the net charge at the intracellular vestibule, 𝑄𝑛𝑒𝑡(𝐿𝑅 , 𝑡). The net charge 

consists of arginine charges and their counter charges formed by the EDL of ionic 

solution in that location. Electro-neutrality is approximate but will not be exact there. 

Flux of charge, displacement current and net charge at vestibules will be discussed 

further in the section under heading Flux of charges at different locations. 

To evaluate the current theoretical model, it is important to compare our 

computational results with experimental measurements [11] in the curves of gating 

current and amount of gating charge moved versus applied voltage (IV and QV 

curves). To construct the QV curve, we calculate 𝑄1 = ∫ 𝐴(𝑧)∑ 𝑐𝑖𝑑𝑧4
𝑖=1

𝐿𝑅

0
,   𝑄2 =

∫ 𝐴(𝑧)∑ 𝑐𝑖𝑑𝑧4
𝑖=1

𝐿𝑅+𝐿

𝐿𝑅
,  𝑄3 = ∫ 𝐴(𝑧)∑ 𝑐𝑖𝑑𝑧4

𝑖=1
2𝐿𝑅+𝐿

𝐿𝑅+𝐿
, which are the amounts of 

arginine found in zone 1, 2 and 3, respectively. Usually 𝑄2 ≈ 0 is due to the energy 

barrier 𝑉𝑏 in zone 2. Arginines tend to jump across zone 2 when driven from zone 1 

to zone 3 as the voltage V is turned on. The number of arginines that move and settles 

at zone 3 depends on the magnitude of 𝑉. Besides IV and QV curves, the time course 

of the movement of arginines and S4, 𝑧𝑖,𝐶𝑀(𝑡) and 𝑍𝑆4(𝑡), is important to report here, 

since recording these movements in experiments becomes feasible nowadays by 

optical methods. Many qualitative models accounting for the movement of S4 and 

conformation change of the voltage sensor have been proposed. Readers are referred 

to review papers [15,16] for more details.  

Eqs. (1-4) are first discretized in space by high-order multi‐block Chebyshev 

pseudospectral methods, and then integrated in time under the framework of method 

of lines. Details of numerical method is referred to Section 8 of supplementary 

information. 

 

RESULTS AND DISCUSSION 

 Here numerical results based on the mathematical model described above were 

calculated and compared with experimental measurements [11]. Our 1D continuum 
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model has advantages and disadvantages. The lack of 3D structural detail means that 

some details of the gating current and charge cannot be reproduced. It should be noted 

however that to reproduce those, one needs more than just static structural detail. One 

must also know how the structures (particularly their permanent and polarization 

charge) change after a command potential is applied, in the experimental ionic 

conditions. The 1D model has advantages because it computes the actual experimental 

results on the actual experimental time scale, in realistic ionic solutions and with far 

field boundary conditions actually used in voltage clamp experiments. It also 

conserves current as we will demonstrate later. Conservation of current needs to be 

present and verified in theories and simulations since it is a universal property of the 

Maxwell equations [12-14]. 

 

QV curve 

 When the membrane and voltage sensor is held at a large inside negative 

potential (e.g., hyperpolarized to -90mV), S4 is in a resting position and all arginines 

stay in the intracellular vestibule. When the potential is made more positive (e.g., 

depolarized to +10mV), S4 is in the active position and all arginines are at the 

extracellular vestibule.  

 The voltage dependence of the charge (arginines) transferred from intracellular 

vestibule to extracellular vestibule is characterized as a QV curve in experimental 

papers and it is sigmoidal in shape [11]. Fig. 2(a) shows that our computed QV 

curve— the dependence of 𝑄3 on V—is in very good agreement with the experiment 

[11]. This good agreement comes from the facts that our resultant QV curve is also a 

sigmoidal curve, and, most important of all, the slope of QV curve can be tuned, 

mainly by the adjustment of K, KS4, bS4, to agree with experiment. Rare theoretical 

models can achieve this agreement especially for the slope. An example of mismatch 

was reported in [17,18]. Fig. 2(b) shows the steady-state distributions of Na+, Cl and 

arginines in the inside negative, hyperpolarized situation (V=-90mV). As we can see, 

all the arginines stay in the intracellular vestibule, and none of the arginines moves to 

the extracellular vestibule (𝑄3 ≈ 0).  

 Fig. 2(c) shows the situation at V=-48mV, which is the midpoint of the QV 

curve. As we can see, each vestibule has distributions of ci, i=1,2,3,4, resulting in half 

of the arginines staying in it (𝑄3 = 2). Judging from the center-of-mass position for 

each arginine, as shown later in Fig. 6, it can be deduced that R1 and R2 are in the 

extracellular vestibule, and R3 and R4 are in the intracellular vestibule. There are 

almost no arginines in zone 2 (hydrophobic plug) due to the energy barrier in it. Note 

that this represents an average because in a single molecule interpretation, half of the 

sensors will be with all R’s inside and the other half with all R’s outside. The 
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midpoint of -48 mV from [11] requires the natural position of S4, 𝑍𝑆4,0, to be biased 

from 𝐿𝑅 + 0.5𝐿 to 𝑍𝑆4,0 = 𝐿𝑅 + 0.5𝐿 + 1.591nm, otherwise the midpoint would be 

0 mV. Fig. 2(d) shows the situation at full depolarization (V=-8mV), where all 

arginines move to extracellular vestibule (𝑄3 ≈ 4) in the fully depolarized, activated 

state. 

 

Gating current 

 Fig. 3 shows the time course of gating currents, observed as flux of charge at 

the middle of hydrophobic plug 𝐼(𝐿𝑅 + 𝐿/2, 𝑡), due to the movement of arginines 

when the membrane is largely depolarized, and partially depolarized. In the case of 

large depolarization, V rises from -90mV at t=10 to -8mV, and drops back to -90mV 

at t=150 (Fig. 3(a)). Time course of gating current and contributions of individual 

arginines are shown in Fig. 3(b). As expected, the rising order of each current 

component follows the moving order of R1, R2, R3 and R4 when depolarized, and 

that order is reversed when repolarized. The area under the gating current is the 

amount of charge moved. Since arginines move forward and backward in this 

depolarization/repolarization scenario, the areas under the ON current and the OFF 

current are same. The areas are equal for each component of current as well. The 

equality of area is an important signature of gating current that contrasts markedly 

with the properties of ionic current [19,20]. In the case of partial depolarization (V 

rises from -90mV to -50mV at t=10 to and drops back to -90mV at t=150, Fig. 3(c)), 

the time course of gating current and its four components contributed by each arginine 

for this situation is shown in Fig. 3(d). Under this partial polarization, not all arginines 

move past the middle of hydrophobic plug due to weaker driving force in partial 

polarizations compared with large depolarization case and this can be observed from 

the areas under each component current being different (Fig. 3(d)). 

 The gating currents can be better understood by looking at a sequence of 

snapshots showing the spatial distribution of electric potential, species concentration 

and electric current. The distributions at several times are shown in Fig. 4(a) for the 

case of sudden change in command voltage to a more positive value, a large 

depolarization, and Fig. 4(b) for the case of a partial depolarization. The electric 

potential profiles at t=13 and t=148 show that the profile of electric potential changes 

as arginines move from left to right even though the voltage is maintained constant 

across the sensor. As highlighted by those equipotential lines superposed on the graph 

of voltage sensor domain in Fig. 4, this is not a constant field system at all [21]!  

Slight bulges in electric potential profile exist wherever arginines are dense. This can 

be easily explained by understanding the effect of Eq. (1) on a concave spatial 

distribution of electric potential.  
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 In Fig. 4, total current defined in Eq. (11), though changing with time, is 

always constant in z at all times, satisfying Kirchhoff’s law, i.e., conservation of 

current. At t=13, when gating current is substantial (Fig. 3b and 3d), we can visualize 

the z-distributions of flux of charges 𝐼(𝑧, 𝑡), displacement of current 𝐼𝑑𝑖𝑠𝑝(𝑧, 𝑡) and 

total current 𝐼𝑡𝑜𝑡(𝑧, 𝑡) individually in Fig. 4. 

 

Flux of charges at different locations 

  Flux of charges 𝐼(𝑧, 𝑡), together with displacement current 𝐼𝑑𝑖𝑠𝑝(𝑧, 𝑡) and 

total current 𝐼𝑡𝑜𝑡(𝑧, 𝑡), depicted in Fig. 4, deserves more discussion here. Though 

𝐼(𝑧, 𝑡), 𝐼𝑑𝑖𝑠𝑝(𝑧, 𝑡) and 𝐼𝑡𝑜𝑡(𝑧, 𝑡) are well defined in Eqs. (8-11), the actual 

computation of them takes an indirect way path due to the assumption of quasi-steady 

state for Na+ and Cl- in Eq. (2). The details are referred to Section 9 of supplementary 

information. The computed total current 𝐼𝑡𝑜𝑡(𝑧, 𝑡) does indeed uphold satisfy 

Kirchhoff’s law by its uniformity in z. This verification is shown in Fig. 4 at several 

times, and we have checked that is in fact true at any time. 

 In the bottom rows of Fig. 4 at t=13, we observe that 𝐼(𝑧, 𝑡) is generally 

non-uniform in z and is accompanied by congestion/decongestion of arginines in 

between. However 𝐼(𝑧, 𝑡) is almost uniform at zone 2 (hydrophobic plug), which 

means almost no congestion/decongestion of arginines occurs there, and therefore no 

contribution to the displacement current 
𝑑

𝑑𝑡
𝑄𝑛𝑒𝑡(𝑧, 𝑡) from zone 2. This is because 

arginines can hardly reside at zone 2 due to the energy barrier in it.  

 Several things are worth noting in the time courses of 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡), and 

𝐼(0, 𝑡) (equal to uniformly distributed 𝐼𝑡𝑜𝑡 as depicted by Eq. (11)) illustrated in Fig. 

5(a) under the case of large depolarization. First, 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡) is noticeably larger 

than 𝐼(0, 𝑡) in the ON period. This is because their difference, exactly the 

displacement current 𝐼𝑑𝑖𝑠𝑝, is always negative at zone 2 when depolarized, since 

arginines are leaving zone 1 and make 
𝑑

𝑑𝑡
𝑄𝑛𝑒𝑡 < 0 for zone 2. It is expected the area 

under the time course of 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡) would be very close to 4e, as verified by the 

time courses of Q3 in Fig. 5(b). We use 𝐼(0, 𝑡) to estimate the experimentally 

measured voltage-clamp current while the counterpart area of experimentally 

measurable 𝐼(0, 𝑡) would be less than 4e due to its smaller magnitude compared with 

𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡). This may partly explain the experimental observations that at most 13e 
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[16,22,23], instead of 16e, are moved during full depolarization in 4 voltage sensors 

(for a single ion channel) based on computing the area under voltage-clamp gating 

current. Therefore, flux of charge at any location of zone 2, though impossible to 

measure in experiments so far, will give us amount of arginines moved during 

depolarization more reliably than the measurable 𝐼(0, 𝑡).  

 Second, we see in Fig. 5(a) with magnification in its inset plot that, as in 

experiments, 𝐼(0, 𝑡), but not 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡), has contaminating leading spikes in ON 

and OFF parts of the current. These spikes are capacitive currents from solution EDL of 

vestibules caused by sudden rising and dropping of command potential. These spikes 

need to be removed in voltage-clamp experiments in order to get rid of the 

contribution from solution EDL (and membrane) to the transport of gating charges 

(arginines) when computing the area under gating current. The technical details of 

removing these spikes are shown in Section 10 of supplementary information, and 

more details about spikes can be found in Section 11 of supplementary information.  

  

 Third, in Fig. 5(b), as arginines move from one vestibule to another, the 

concentrations of Na+ and Cl also correspondingly change with time at the vestibules. 

They form counter charges through EDL, and balance arginine charges at vestibules. 

However, these EDL changes only maintain approximate, not exact, charge balance as 

shown in Fig. 5(b). The violation of electroneutrality causes the displacement current, 

that is not negligible.  

 As in the previous section, we used flux of charges at the middle of 

hydrophobic plug, 𝐼(𝐿𝑅 + 𝐿 2⁄ , 𝑡), instead of experimentally measurable 𝐼(0, 𝑡) to 

represent the gating current in discussions. We may as well name 𝐼(𝐿𝑅 + 𝐿 2⁄ , 𝑡) as 

arginine current in order to avoid the confusion with the actual gating current 𝐼(0, 𝑡) 

here. This arginine current leaves out its associated displacement current 𝐼𝑑𝑖𝑠𝑝(𝐿𝑅 +

𝐿 2⁄ , 𝑡), and serves to represent gating current better for two reasons:  

(1) The area under time course of 𝐼(𝐿𝑅 + 𝐿 2⁄ , 𝑡) gives us the amount of 

arginines moved during depolarization more faithfully than 𝐼(0, 𝑡). The fluxes 

of charge for each arginine shown in Fig. 3(b) and Fig. 3(d) carry important 

information about how each arginine is moved by the electric field, that will be 

further illustrated in Fig. 6. All these will not be easy to display and 

comprehend if we use 𝐼(0, 𝑡) instead.  

(2) Using 𝐼(0, 𝑡) as a definition of gating current would require a 

decontamination by removing the leading spikes in it, which is computationally 

costly. Especially, it removing spikes would pose a heavy numerical burden 
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when doing parameter fitting, where numerous repeated computations need to 

be conducted.  

Time course of arginine and S4 translocation 

 Fig. 6 shows the time course of Q (amount of arginines moved to extracellular 

vestibule, equal to Q3 here) and center-of-mass trajectories of individual arginines 

(𝑧𝑖,𝐶𝑀, i=1, 2, 3, 4) and S4 segment (𝑍𝑆4). Figs. 6(a) and 6(b) show the case of large 

depolarization and Figs. 6c and 6d show the case of smaller, partial depolarization.  

 In the case of large depolarization (Fig. 6(b)) the arginines and S4 z-positions 

quickly reach individual steady states with almost all arginines transferred to the 

extracellular vestibule, as previously shown in Fig. 4(a). Therefore, Q is close to its 

saturated value 4, as shown in Fig. 6(a). Arginines and S4 move back to the 

intracellular vestibule once the voltage drops back to -90mV. From Fig. 6(b), the 

forward moving order of arginines is R1, R2, R3 and R4, and the backward moving 

order is the opposite R4, R3, R2 and R1 with agreement with the structure. This 

agreement might look trivial in MD simulations, but is not a trivial checking here 

since the present model describes arginines not by particles as in MD but by 

concentrations. Besides, incorrect order and pace of the movement of arginines would 

cause the disagreement with experiments in the shape of IV curve as well. Note that S4 

is initially farthest to the right but lags behind R1 and R2 during movement in 

depolarization, as shown in Fig. 6(b). This is certainly because S4 is initially relaxed to 

an almost unforced situation close to its natural position 𝑍𝑆4,0. We can further 

calculate the displacements of each arginine and S4 during this full saturating 

depolarization, and find Δ𝑧1,𝐶𝑀 ≈ Δ𝑧2,𝐶𝑀 ≈ Δ𝑧3,𝐶𝑀 ≈ 1.93nm, Δ𝑧4,𝐶𝑀=1.76nm, 

Δ𝑍𝑆4=1.51nm. Besides almost the same displacements for R1, R2 and R3, their 

average moving velocities are also very close to each other. Near identity in velocity 

seems to suggest a synchronized movement among R1, R2 and R3 that we have not 

(knowingly) imposed on the arginines in our model. Also, we can see the movements 

of arginines contribute significantly to the movement of the S4 segment. This can be 

seen from the steady state z-position of S4 derived from Eq. (6), 

𝑍𝑆4 =
𝐾

𝐾𝑆4+4𝐾
∑ (𝑧𝑖,𝐶𝑀 − 𝑧𝑖) +

𝐾𝑆4

𝐾𝑆4+4𝐾

4
𝑖=1 𝑍𝑆4,0 =

1

5
[𝑍𝑆4,0 + ∑ 𝑧𝑖,𝐶𝑀

4
𝑖=1 ]. 

 Experimental estimates of S4 displacement during full depolarization range 

from 2-20 Å  [15,24] depending on the model of the voltage sensor and its motion. 

Including the transporter model, the helical screw, and the paddle model [15]. Our 

Δ𝑍𝑆4=1.51 nm here is large and seems to agree better with experimental estimates 

requiring large displacements, such as the paddle model. However, our model was 

inspired by the helical screw model, which is known to have shorter displacements. A 
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plausible explanation for our over-estimate of Δ𝑍𝑆4 is that our one-dimensional 

model uses a straight-line perpendicular to the hydrophobic plug path for the 

movement of the arginines. In reality, the S4 segment is significantly tilted with 

respect to the membrane and the arginines follow a spiral along the helix. Therefore if 

the S4 segment rotates and changes its tilt during activation the total vertical 

translation needed to cross the hydrophobic plug is significantly reduced, as was 

shown by Vargas et al [26]. The value obtained in [26] was between 0.7 to 1 nm when 

comparing the displacement perpendicular to the membrane of the open-relaxed state 

crystal structure of Kv1.2 [25] and the closed structure that has been derived by 

consensus from experimental measurements [26]. 

 In the partially depolarized case the driving force is weaker than in a large 

saturating depolarization, so their z-positions do not have a chance to reach steady 

states as they do during a full saturating depolarization. Rather in a partial 

depolarization the motion of the arginines and S4 are aborted. They return to the 

intracellular vestibule because the depolarization drops (i.e., decreases in magnitude) 

before arginines and S4 have a chance to reach their saturated positions. This detailed 

atomic interpretation likely over reaches the resolution of our model. We look forward 

to measurements of movements of probes that mimic arginine and in its environment 

that require improvements in the resolution and structural realism of our model. 

 Fig. 6(c) illustrates these aborted motions. Q reaches 1.57 at most which should 

be 2 instead if saturation were reached as it is if time is long enough. See the saturated 

behavior shown in QV curve of Fig. 2(a). Fig. 6(d) shows that the S4 segment is 

initially farthest to the right and lags behind R1 during movement and is almost 

caught up by R2. The maximum displacements of arginines and S4 calculated from 

Fig. 6(d) are Δ𝑧1,𝐶𝑀 =1.36nm,  Δ𝑧2,𝐶𝑀 =0.966nm,  Δ𝑧3,𝐶𝑀 =0.459nm, 

 Δ𝑧4,𝐶𝑀 =0.316nm, and Δ𝑍4,𝐶𝑀 =0.616nm. The significant difference between 

Δ𝑧1,𝐶𝑀,  Δ𝑧2,𝐶𝑀 and Δ𝑧3,𝐶𝑀,  Δ𝑧4,𝐶𝑀 may imply that R1 and R2 have jumped across 

hydrophobic plug and entered extracellular vestibule, while R3 and R4 still stay at 

intracellular vestibule during this partial depolarization. This is consistent with the 

observation from individual gating current components of arginines in Fig. 3(d). 

 

Family of gating currents for a range of voltages 

 Though we prefer 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡) to 𝐼(0, 𝑡) for representing gating current as 

explained in the section under heading Flux of charges at different locations, we here 

use the actual gating current, de-spiked 𝐼(0, 𝑡), to compare with experiment [11]. Fig. 

7(a) shows the time courses of subtracted gating current (de-spiked 𝐼(0, 𝑡)) for a 

range of voltages V, ranging from -62mV to -8mV. The area under gating current, for 
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both on and off parts, increases with V since more arginines are transferred to 

extracellular vestibule as V increases. The shapes of this family of gating currents 

agree well with experiment [11] in both magnitude and time course.  

 We can characterize the time course by fitting the decay part of a subtracted 

gating current by 𝑎𝑒−𝑡 𝜏1⁄ + 𝑏𝑒−𝑡 𝜏2⁄ , 𝜏1 < 𝜏2, as generally conducted done in 

experiments [11], where 𝜏1 is the fast time constant and 𝜏2 is the slow time constant. 

Usually the movement of arginines is dominated by 𝜏2. Here 𝜏2 was calculated from 

simulation and compared with experiment [11] as shown in Fig. 7(b). Since in our 

computation the time is in arbitrary units, we have scaled the time to have the 

maximum 𝜏2 to fit with its counterpart in experiment [11]. Overall, the trend of 𝜏2 

versus V in our result, though not the whole curve, agrees well with experiment [11]. 

For the left branchesTo the left of to the maximum point in Fig. 7(b), simulation 

results fit rather well with experiment compared with the values to the rightright 

branches to of  the maximum point, where it overestimates 𝜏2 compared with 

experiment. This overestimate is consistent with the observation that the amount of 

transferred charges Q saturates slightly faster in experimental data than in present 

simulation, as V increases (see QV curve of Fig. 2(a)). This phenomenon is related to 

cooperativity of movement among arginines, that will be further discussed below. 

 

Effect of voltage pulse duration 

 Fig. 8 shows the effect of voltage pulse duration with Fig. 8(a) for the case of 

partial depolarization and Fig. 8(b) for the case of full depolarization. Magnitude and 

time span of subtracted gating current (de-spiked 𝐼(0, 𝑡)) are changed by pulse 

duration in both cases, but the shape will asymptotically approach the same curve as 

pulse duration increases, no matter what the size of the depolarization. This behavior 

occurs because it takes time for the command pulse to drive the arginines towards the 

extracellular vestibule. If the pulse duration is long enough, the time course of Q will 

approach its steady state for large depolarization, as in Fig. 6(a). Partial depolarization 

takes longer time to reach its steady state as demonstrated in Fig. 6(c). The shapes of 

gating currents in Fig. 8 compare favorably with experiment [11], where the OFF 

subtracted gating currents for short pulses have very fast decays while for long pulses 

the OFF subtracted gating currents have rising phase and slower decay. 

 

CONCLUSIONS 

 

 The present one-dimensional mechanical model of the voltage sensor tries to 

capture the essential structural details of the movement of mass and charge that are 

necessary to reproduce the basic features of experimentally recorded gating currents. 
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After finding appropriate parameters, we find that the general kinetic and steady-state 

properties are well represented by the simulations. The good agreement of our 

numerical results with salient features of gating current measured experimentally 

would be impossible by simply tuning of parameters if our model has not captured the 

essence of physics for voltage sensor. The continuum approach seems to be a good 

model of voltage sensors, provided that it i) takes into account all interactions crucial 

to the movement of gating charges and S4; ii) computes their correlations consistently, 

so all variables satisfy all equations under all conditions, with one set of parameters, 

and iii) satisfies conservation of current. This last point gave us a new insight: what is 

measured experimentally does not correspond to the transfer of the arginines because 

the total current, containing a displacement current, is smaller than the arginine 

current.  

 We have simplified the profile of energy barrier in the hydrophobic plug since 

the PMF in that region, and its variation with potential and conditions, is unknown. 

There is plenty of detailed information on the amino acid side chains in the plug and 

how each one of them changes the kinetics and steady-state properties of gating 

charge movement [6]. Therefore the next step is to model the details of interactions or 

the moving arginines with the wall of the hydrophobic plug and the contributions from 

other surrounding charged protein components. Some of the effects to be included are 

1) Steric and dielectric interactions of the arginines that the present 

model does not include. These interactions may be responsible for the 

simultaneous movement of two to three arginines across the plug, 

which is an experimental result that the present model does not 

reproduce [27,28]. 

2) Time dependence of the plug energy barrier Vb. Once the first arginine 

enters the hydrophobic plug by carrying some water with it, this partial 

wetting of the hydrophobic plug will lower Vb, chiefly consisting of 

solvation energy, and enable the next arginine to enter the plug with 

less difficulty. This might explain the cooperativity of movement among 

arginines when they jump through the plug. The addition of details in 

the plug may also produce intermediate states that have been measured 

experimentally. In this situation arginines may transiently dwell within 

the plug. 

3) A very strong electric field might affect the hydration equilibrium of the 

hydrophobic plug and would lower its hydration energy barrier as well 

[29]. This cooperativity of movement may help explain the quick 

saturation in the upper right branch of QV curve (and smaller τ2). It 

may also explain the experimentally observed translocation of two to 
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three arginines simultaneously [27,28]. 

The power of the present mathematical modeling is precisely the 

implementation of interactions, and various effects, in a consistent manner. 

Implementing the various effects listed above is likely to lead to a better 

prediction of the currents and to the design of experiments to further test and 

extend the model. 

 Further work must address the mechanism of coupling between the voltage 

sensor movements and the conduction pore. It seems likely that the classical 

mechanical models of coupling will need to be extended to include coupling through 

the electrical field. The charges involved are large. The distances are small, so the 

changes in electric forces that accompany movements of mass are likely to be large 

and important. It is possible that the voltage sensor modifies the stability of a 

fundamentally stochastically unstable, nearly bistable conduction current by triggering 

sudden transitions from closed to open state, in a controlled process reminiscent of 

Coulomb blockade in a noisy environment [30]. 
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Figure 1. (a) Geometric configuration of gating pore in the present model including 

the attachments of arginines to the S4 segment. (b) Following (a), an axisymmetric 

3-zone domain shape is designated in r-z coordinate for the current 1D model. Here 

the diameter of hydrophobic plug is 0.3nm (arginine’s diameter); L=0.7nm; LR=1.5nm; 

radius of vestibule is R=1nm. BC means Boundary Condition.  

 

 

Figure 2. (a) QV curve and comparison with [11]. Steady-state distributions for Na, Cl 

and arginines at (b) V=-90mV, (c) V=-48mV, (d) V=-8mV.  
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Figure 3. (a) Time course of V rising from -90mV to -8mV at t=10, holds on till t=150, 

and drops back to -90mV, (b) time course of gating current, 𝐼(𝐿𝑅 + 𝐿/2, 𝑡), and its 

components corresponding to (a), (c) time course of V rising from -90mV to -50mV at 

t=10, holds on till t=150, and drops back to -90mV, (d) time course of gating current, 

𝐼(𝐿𝑅 + 𝐿/2, 𝑡), and its components corresponding to (c).  
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Figure 4. (a) The top row are dimensionless species concentration distributions at t=0, 

13, 148, for the case of large depolarization with V from -90mV at t=10 to -8mV, and 

dropping back to -90mV at t=150. The second row shows concurrent electric potential 

profiles. The third row show 11 equipotential lines under equal potential increment 

from smallest to largest potential values at the time indicated superposed on voltage 

sensor domain as displayed in Figure 1(b). The bottom row shows concurrent electric 

current profiles with components of flux of charge, displacement current and total 

current. (b) Same as (a) except with V depolarized from -90mV to -50mV.   
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Figure 5. (a) Time courses of 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡), 𝐼(0, 𝑡) and de-spiked 𝐼(0, 𝑡) for the 

case of full depolarization with V rising from -90mV to -8mV at t=10, holding on till 

t=150, and dropping back to -90mV. The inset plot is a magnification of ON-current 

to visualize the difference of 𝐼(0, 𝑡) and de-spiked 𝐼(0, 𝑡) more clearly. (b) Time 

courses of 𝑄1, 𝑄3, ∫ (𝑐𝑁𝑎 − 𝑐𝐶𝑙)
𝐿𝑅

0
𝑑𝑧,  and ∫ (𝑐𝑁𝑎 − 𝑐𝐶𝑙)

2𝐿𝑅+𝐿

𝐿𝑅+𝐿
𝑑𝑧  under the same 

depolarization scenario as (a). 

 

Figure 6. (a) and (c) are time courses of amount of arginines moved to extracellular 

vestibule. (b) and (d) are center-of-mass trajectories of individual arginines and S4. (a) 

and (b) are the case of large depolarization with V rising from -90mV to -8mV at t=10, 

holding on till t=150, and dropping back to -90mV. (c) and (d) are the case of partial 

depolarization with V rising from -90mV to -50mV at t=10, holding on till t=150, and 

dropping back to -90mV. 
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Figure 7. (a) Time courses of subtracted gating current, de-spiked 𝐼(0, 𝑡), with 

voltage rising from -90mV to V mV at t=10, holds on till t=150, and drops back to 

-90mV, where V=-62, -50, … -8 mV. (b) 𝜏2 versus V compared with experiment 

[11].  

 

 

Figure 8. Subtracted gating currents, de-spiked 𝐼(0, 𝑡), showing effect of voltage 

pulse duration: (a) V increases from -90mV to -35mV at t=10 and drops back to 

-90mV at various times, (b) V increases from -90mV to 0mV at t=10 and drops back 

to -90mV at various times. 

 



25 

  



26 

SUPPLEMENTARY INFORMATION 

 

Continuum Gating Current Models Computed with Consistent Interactions 

Tzyy-Leng Horng , Robert S. Eisenberg, Chun Liu, Francisco Bezanilla 

 

1. Non-dimensionalization 

We non-dimensionalize all physical quantities as follows, 

𝑐̃𝑖 =
𝑐𝑖

𝑐0
, 𝜙̃ =

𝜙

𝑘𝐵𝑇/𝑒
, 𝑈 =

𝑈

𝑘𝐵𝑇
, 𝑠̃ =

𝑠

𝑅
, 𝑡̃ =

𝑡

𝑅2/𝐷𝑥
, 𝐷̃𝑖 =

𝐷𝑖

𝐷𝑥
, 𝑔̃𝑖𝑗 =

𝑔𝑖𝑗

𝑘𝐵𝑇/𝑐0
, 𝐽𝑖 =

𝐽𝑖

𝑐0𝐷𝑥/𝑅
,

𝐼 =
𝐼

𝑒𝑐0𝐷𝑥𝑅
, 

where 𝑐𝑖  is concentration of species i, with i=Na+, Cl, 1, 2, 3, and 4. Each is scaled 

by 𝑐0 which is the bulk concentration of NaCl at the intracellular/extracellular 

domains. Here 𝑐0 is set to be 184 mM, equal on both sides, so that the Debye length 

𝜆𝐷 = √
𝜀𝑟𝜀0𝑘𝐵𝑇

𝑐0𝑒
2

 is 1nm when the relative permittivity 𝜀𝑟 = 80. Note that the 

concentrations 𝑐𝑖 , i=1, 2, 3, and 4 need to satisfy the following additional 

constraint ∫ 𝐴(𝑧)𝑐𝑖𝑑𝑧 = 1
𝐿+2𝐿𝑅

0
 due to uniqueness of each arginine, with 𝐴(𝑧) being 

the cross-sectional area of channel shown in Fig. 1(b) at position z. 𝜙 is the electric 

potential scaled by 𝑘𝐵𝑇/𝑒 with 𝑘𝐵  being the Boltzmann constant; 𝑇 the 

temperature; e the elementary charge. All relevant external potentials U are scaled by 

𝑘𝐵𝑇. All sizes s are scaled by R, which is the radius of vestibule as shown in Fig. 1(b). 

R=1nm here. The time t is scaled by 𝑅2/𝐷𝑥, with 𝐷𝑥 being a diffusion coefficient 

that can be adjusted later to be consistent with the time spans of on/off currents 

measured in experiments (caused by the movement of arginines). The diffusion 

coefficient of species i is scaled by 𝐷𝑥. The coupling constant 𝑔𝑖𝑗 of PNP-steric 

model based on combining rules of Lennard Jones, representing the strength of steric 

interaction between species i and j, is scaled by 𝑘𝐵𝑇/𝑐0 [1,2]. For simplicity, we 

assume 𝑔𝑖𝑗 = {
𝑔, for all 𝑖 ≠ 𝑗

 0,     for all 𝑖 = 𝑗 
, 𝑖, 𝑗 = 1,2,3,4. Note that here we only consider 

steric interaction among arginines. We think they are a crucial source of correlated 

structural change and motion (of mass and charge). The consideration of steric effect 

among arginines is justified by the fact that arginines are generally crowded in 

hydrophobic plug and vestibules. The flux density of species i, 𝐽𝑖, is scaled by 

𝑐0𝐷𝑥/𝑅, and therefore the electric current I is scaled by 𝑒𝑐0𝐷𝑥𝑅. For simplicity of 

notation, we will drop ~ for all dimensionless quantities shown in all equations.  
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2. Shape of potential of mean force (PMF) in the hydrophobic plug 

Here, we simply assume a hump shape for PMF in the hydrophobic plug as,  

       {
𝑉𝑏 = 𝑉𝑏,𝑚𝑎𝑥(tanh(5(𝑧 − 𝐿𝑅)) − tanh(5(𝑧 − 𝐿 − 𝐿𝑅)) − 1),   𝑤ℎ𝑒𝑛 𝑧 is in zone 2,

𝑉𝑏 = 0,    𝑤ℎ𝑒𝑛 𝑧 is in zone 1 and 3,
                        (S1) 

with 𝑉𝑏,𝑚𝑎𝑥 set to be 5 for a good agreement with experimental measurements. 

Theoretically, if we set 𝑉𝑏,𝑚𝑎𝑥 too large, the gating current would be slow and 

perhaps small because it would be very difficult for arginines to move across this 

barrier. The double tanh functions are designed to smooth the otherwise top-hat-shape 

barrier profile, which is not good for numerical differentiation because of its awkward 

infinite slopes. This smoothing is simply based on the belief that the energy barrier in 

a protein structure does not have a jump. In future work, it would be wise to compute 

the PMF from a specific model of charge distribution (both permanent and 

polarization) constructed from a combination of structural data and molecular 

dynamics simulations, if feasible. 

 

3. Governing equations derivation from energy variation methods 

Governing equations Eqs. (1-4) were derived by energy variational methods 

based on the following energy (in dimensional form): 

𝐸 = ∫ [𝑘𝐵𝑇 ∑ 𝑐𝑖𝑙𝑜𝑔𝑐𝑖 −
𝜀0𝜀𝑟

2𝑎𝑙𝑙 𝑖 |∇𝜙|2 + ∑ 𝑧𝑖𝑒𝑎𝑙𝑙 𝑖 𝑐𝑖𝜙 + ∑ (𝑉𝑖 + 𝑉𝑏)𝑎𝑟𝑔𝑖𝑛𝑖𝑛𝑒𝑠 𝑐𝑖 +
𝑉

∑
𝑔𝑖𝑗

2
𝑐𝑖𝑐𝑗𝑎𝑟𝑔𝑖𝑛𝑖𝑛𝑒𝑠 𝑖,𝑗 ] 𝑑𝑉,                                           (S.2) 

where the first term is entropy; second and third terms are electrostatic energy; the 

fourth term is the constraint and barrier potential for arginines; the last term is the 

steric energy term, based on Lennard-Jones potential [1,3]. The Poisson equation Eq. 

(1) is derived from the variation of energy with respect to electric potential 

𝛿𝐸

𝛿𝜙
= 0, 

and species flux densities in Eqs. (3,4) are derived by 

𝜇𝑖 =
𝛿𝐸

𝛿𝑐𝑖

,       𝐽𝑖 = −
𝐷𝑖

𝑘𝐵𝑇
𝑐𝑖∇𝜇𝑖 , 

where 𝜇𝑖  is the chemical potential of species i. 

 

4. Quasi-steadiness assumption for Na+ and Cl- 

已註解 [A2]: I hope you all agree and the wording is OK. I 

left out the lumped capacitor representation as too likely 

to show our hand to competitors. 
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Here we assume quasi-steady state for Na+ and Cl-, which means 
𝜕𝑐𝑖

𝜕𝑡
= 0, 𝑖 =

𝑁𝑎, Cl. The sSteady state assumption here is justified by the fact that the diffusion 

coefficients of Na+ and Cl in vestibules are much larger than the diffusion coefficient 

of arginine based on the very narrow time span of the leading spike of gating current 

measured in experiments. The spike comes from the linear capacitive current of 

vestibule when the command potential suddenly rises or drops. This quasi-steady state 

assumption is essential for the success of our calculations. Otherwise using realistic 

diffusion coefficients for Na+ and Cl- would render Eqs. (1-4) too stiff to integrate in 

time. The spike contaminating the gating current is removed in experiments by a 

simple technique called P/n leak subtraction (see Section 11). P/n leak subtraction is 

also used to subtract the linear capacity current of all the membranes in the real 

system that are not included in our model. How to do leak subtraction computationally 

will be discussed in Section 10. 

 

5. Formulation of boundary conditions 

Types of boundary conditions is illustrated in Fig. 1(b). Note the no-flux 

boundary conditions specified in Fig. 1(b). One prevents Na+ and Cl from entering 

the hydrophobic plug (zone 2) with low dielectric coefficient. The other boundary 

condition constrains S4 motion and so prevents the arginines from leaving the 

vestibules into intracellular/extracellular domains. 

Boundary and interface conditions for electric potential 𝜙 are 

𝜙(0) = 𝑉,    𝜙(𝐿𝑅
−) = 𝜙(𝐿𝑅

+),    Γ(𝐿𝑅
−)𝐴(𝐿𝑅

−)
𝑑𝜙

𝑑𝑧
(𝐿𝑅

−) = Γ(𝐿𝑅
+)𝐴(𝐿𝑅

+)
𝑑𝜙

𝑑𝑧
(𝐿𝑅

+), 

𝜙(𝐿𝑅 + 𝐿−) = 𝜙(𝐿𝑅 + 𝐿+),    Γ(𝐿𝑅 + 𝐿−)𝐴(𝐿𝑅 + 𝐿−)
𝑑𝜙

𝑑𝑧
(𝐿𝑅 + 𝐿−) = Γ(𝐿𝑅 +

𝐿+)𝐴(𝐿𝑅 + 𝐿+)
𝑑𝜙

𝑑𝑧
(𝐿𝑅 + 𝐿+),     𝜙(2𝐿𝑅 + 𝐿) = 0.                     (S.3) 

These are Dirichlet boundary conditions at both ends and continuity of electric 

potential and displacement at the interfaces between zones. Boundary and interface 

conditions for arginine are 

𝐽𝑖(0, 𝑡) = 𝐽𝑖(2𝐿𝑅 + 𝐿, 𝑡) = 0,   𝑐𝑖(𝐿𝑅
+ , 𝑡) = 𝑐𝑖(𝐿𝑅

− , 𝑡),    𝐴(𝐿𝑅
−)𝐽𝑖(𝐿𝑅

− , 𝑡) =

𝐴(𝐿𝑅
+)𝐽𝑖(𝐿𝑅

+ , 𝑡), 𝑐𝑖(𝐿𝑅 + 𝐿−, 𝑡) = 𝑐𝑖(𝐿𝑅 + 𝐿+, 𝑡), 𝐴(𝐿𝑅 + 𝐿−)𝐽𝑖(𝐿𝑅 + 𝐿−, 𝑡) =

 𝐴(𝐿𝑅 + 𝐿+)𝐽𝑖(𝐿𝑅 + 𝐿+, 𝑡),   𝑖 = 1,2,3,4,                               (S.4) 

where no-flux boundary conditions are placed at both ends of the gating pore, 

consisting of vestibules and hydrophobic plug, to prevent arginines and S4 from 

entering intracellular/extracellular domains. The others are continuity of concentration 

and flux at interfaces between zones. Boundary conditions for Na+ and Cl are 
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𝑐𝑁𝑎(0, 𝑡) = 𝑐𝐶𝑙(0, 𝑡) = 𝑐𝑁𝑎(2𝐿𝑅 + 𝐿, 𝑡) = 𝑐𝐶𝑙(2𝐿𝑅 + 𝐿, 𝑡) = 1,   

 𝐽𝑁𝑎(𝐿𝑅 , 𝑡) = 𝐽𝐶𝑙(𝐿𝑅 , 𝑡) = 𝐽𝑁𝑎(𝐿𝑅 + 𝐿, 𝑡) = 𝐽𝐶𝑙(𝐿𝑅 + 𝐿, 𝑡) = 0,           (S.5) 

where Dirichlet boundary conditions are placed at both ends of the gating pore to 

describe the concentrations for Na+ and Cl as the bulk concentration. No-flux 

boundary conditions at both ends of hydrophobic plug describe the impermeability of 

Na+ and Cl into hydrophobic plug. 

 

6. Parameters fitting 

We have tried and found Di=50, i=1,2,3,4, K=3, KS4=3, bS4=1.5 provide the best 

fit to the important experiments reported in [4]. Several things are to be noted about 

the parameter values specified above: (1) there is no experimental measurement of 

diffusion coefficient of arginine inside vestibule and plug available that we can use for 

simulation. Imprecise setting of these diffusion coefficient values only affects the 

scale of time in I-V curve, but not its shape. That is why we set time coordinate to be 

in an arbitrary unit later in results, and here we only focus on comparing the shape of 

IV curves with experiments in [4]. (2) K, KS4, and bS4 were particularly determined by 

fitting with QV curve in experiment [4]. QV curve is very sensitive to K, KS4, and bS4, 

and many efforts have been taken to achieve these values.  

 

7. Derivation of Ampere’s law in Maxwell’s equations by Poisson equation and 

species transport equation 

Eq. (8) is consistent with Ampere’s law in Maxwell’s equations: 

∇ × (
𝐵⃗ 

𝜇0
) = 𝜀0𝜀𝑟

𝜕𝐸⃗ 

𝜕𝑡
+ 𝐽 ,           (S.6) 

or equivalently, 

∇ ∙ (𝜀0𝜀𝑟
𝜕𝐸⃗ 

𝜕𝑡
+ 𝐽 ) = 0,        (S.7) 

where 𝐸⃗  is the electric field and 𝐽  is flux density of charge (current density). Eq. 

(S.7) tells us that the total current is conserved everywhere and it consists of flux of 

charges 𝐽  and displacement current 𝜀0𝜀𝑟
𝜕𝐸⃗ 

𝜕𝑡
. Eq. (S.7) can be derived from the 

Poisson equation and species transport equation like Eq. (1) and Eq. (2). Starting from 

Poisson equation in dimensional form: 

−∇ ∙ (𝜀0𝜀𝑟∇𝜙) = 𝜌 + ∑ 𝑧𝑖𝑒𝑐𝑖𝑖 ,      (S.8) 

or equivalently 

∇ ∙ (𝜀0𝜀𝑟𝐸⃗ ) = 𝜌 + ∑ 𝑧𝑖𝑒𝑐𝑖𝑖 .    (S.9) 
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Taking time derivative of Eq. (S.9), 

∇ ∙ (𝜀0𝜀𝑟
𝜕𝐸⃗ 

𝜕𝑡
) = ∑ 𝑧𝑖𝑒

𝜕𝑐𝑖

𝜕𝑡𝑖 ,           (S.10) 

and using species transport equation based on mass conservation, 

𝜕𝑐𝑖

𝜕𝑡
+ ∇ ∙ 𝐽 𝑖 = 0,             (S.11) 

then 

∇ ∙ (𝜀0𝜀𝑟
𝜕𝐸⃗ 

𝜕𝑡
) = ∑ 𝑧𝑖𝑒

𝜕𝑐𝑖

𝜕𝑡
=𝑖 − ∇ ∙ ∑ 𝑧𝑖𝑒𝐽 𝑖 = −∇ ∙ 𝐽 𝑖 ,           (S.12) 

which becomes exactly Eq. (S.7) by defining 

𝐽 =∑ 𝑧𝑖𝑒𝐽 𝑖𝑖 .             (S.13) 

A more general treatment that does not involve assumptions about 𝜀𝑟  can be found in 

Eisenberg [5-7].  

Casting Eq. (S.7) into the present 1D framework by integrating it in space and 

applying the divergence theorem, we have 

𝜀0𝜀𝑟𝐴(𝑧)
𝜕𝐸(𝑧,𝑡)

𝜕𝑡
+ 𝐼(𝑧, 𝑡) = 𝜀0𝜀𝑟𝐴(0)

𝜕𝐸(0,𝑡)

𝜕𝑡
+ 𝐼(0, 𝑡).       (S.14) 

Comparing with Eq. (11),  

𝜀0𝜀𝑟𝐴(𝑧)
𝜕𝐸(𝑧,𝑡)

𝜕𝑡
− 𝜀0𝜀𝑟𝐴(0)

𝜕𝐸(0,𝑡)

𝜕𝑡
= 𝐼𝑑𝑖𝑠𝑝(𝑧, 𝑡),          (S.15) 

which justifies the naming of displacement current in Eq. (11).  

 

8. Numerical method 

 High-order multi‐block Chebyshev pseudospectral methods are used here to 

discretize Eqs. (1-4) in space [8]. The resultant semi discrete system is then a set of 

coupled ordinary differential equations in time and algebraic equations (an ODAE 

system) [9]. The ordinary differential equations are chiefly from Eq. (2), and algebraic 

equations are chiefly from Eq. (1) and boundary/interface conditions Eqs. (S.3-S.5). 

This system is further integrated in time by an ODAE solver (ODE15S in MATLAB 

[10,11]) together with appropriate initial condition. ODE15S is a variable order 

variable step (VSVO) solver, which is highly efficient in time integration because it 

adjusts the time step and order of integration. High‐order pseudospectral methods 

generally provide excellent spatial accuracy with economically practicable resolutions. 

A combination of these two techniques makes the whole computation very efficient. 

This is particularly important here, since numerous computations have to be tried 

during the tuning of parameters. Efficiency will be vital in future calculations 

comparing theory and experiment in a wide variety of mutants and experimental 

conditions. 
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9. Computation of flux of charge, displacement current and total current 

According to definition in Eq. (10), flux of charges at the middle of gating pore, 

𝐼(𝐿𝑅 + 𝐿/2, 𝑡), and both ends of gating pore, 𝐼(0, 𝑡) and 𝐼(2𝐿𝑅 + 𝐿, 𝑡), should be 

computed by 

𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡) = 𝐴 (𝐿𝑅 +

𝐿

2
)∑ 𝑧𝑖𝐽𝑖 (𝐿𝑅 +

𝐿

2
, 𝑡)𝑎𝑟𝑔𝑖𝑛𝑖𝑛𝑒𝑠 ,     (S.16) 

𝐼(0, 𝑡) = 𝐴(0) ∑ 𝑧𝑖𝐽𝑖(0, 𝑡)𝑖=𝑁𝑎,𝐶𝑙 ,                      (S.17) 

𝐼(2𝐿𝑅 + 𝐿, 𝑡) = 𝐴(2𝐿𝑅 + 𝐿)∑ 𝑧𝑖𝐽𝑖(2𝐿𝑅 + 𝐿, 𝑡)𝑖=𝑁𝑎,𝐶𝑙 .     (S.18) 

Except 𝐼 (𝐿𝑅 +
𝐿

2
, 𝑡), 𝐼(0, 𝑡) and 𝐼(2𝐿𝑅 + 𝐿, 𝑡) are trivially zero due to the 

implement of quasi-steadiness 
𝜕𝑐𝑖

𝜕𝑡
= 0, 𝑖 = 𝑁𝑎, Cl, in vestibules, which causes 𝐽𝑁𝑎 

and 𝐽𝐶𝑙 to be uniform in vestibules by Eq. (2), and further become zero by the no-flux 

boundary conditions for 𝑁𝑎+ and 𝐶𝑙− at the bottom of vestibules as described in Eq. 

(S.5). We have to alternatively reconstruct 𝐼(0, 𝑡) and 𝐼(2𝐿𝑅 + 𝐿, 𝑡) by charge 

conservation of 𝑁𝑎+ and 𝐶𝑙−, 

𝐼(0, 𝑡) =
𝑑

𝑑𝑡
∫ 𝐴(𝑧)∑ 𝑧𝑖𝑐𝑖𝑑𝑧𝑁𝑎,𝐶𝑙

𝐿

0
,                     (S.19) 

𝐼(2𝐿𝑅 + 𝐿, 𝑡) = −
𝑑

𝑑𝑡
∫ 𝐴(𝑧)∑ 𝑧𝑖𝑐𝑖𝑑𝑧𝑁𝑎,𝐶𝑙

𝐿+2𝐿𝑅

𝐿+𝐿𝑅
.          (S.20) 

After obtaining 𝐼(0, 𝑡) and 𝐼(2𝐿𝑅 + 𝐿, 𝑡), we can further reconstruct the flux of 

charges 𝐼(𝑧, 𝑡) at zone 1 and zone 3 by charge conservation of 𝑁𝑎+ and 𝐶𝑙− again, 

𝐼(𝑧, 𝑡) = 𝐼(0, 𝑡) −
𝑑

𝑑𝑡
∫ 𝐴(𝑧)∑ 𝑧𝑖𝑐𝑖𝑑𝑧𝑁𝑎,𝐶𝑙

𝑧

0
,   𝑧 ∈ [0, 𝐿𝑅],    (S.21) 

𝐼(𝑧, 𝑡) = 𝐼(2𝐿𝑅 + 𝐿, 𝑡) +
𝑑

𝑑𝑡
∫ 𝐴(𝑧) ∑ 𝑧𝑖𝑐𝑖𝑑𝑧𝑁𝑎,𝐶𝑙

2𝐿𝑅+𝐿

𝑧
,   𝑧 ∈ [𝐿𝑅 + 𝐿, 2𝐿𝑅 + 𝐿]. (S.22) 

Once the flux of charges is analyzed, we can then compute the displacement current 

based on finding the time derivative of Eq. (9), and the summation of flux of charge 

and displacement current would be the total current. 

 

10. Removing spike in total current 

In voltage-clamp experiments, subtracting this linear capacitive component and 

removing the spike from gating current is done by ‘leak subtraction’, in various forms, 

e.g., P/4 (see details in Section 11) In reality, this linear capacitive current that is 

subtracted in this procedure comes from both the lipid bilayer membrane in parallel 

with the gating pore. Here, we only considered the capacitive current from solution 

EDL of vestibule inside the gating pore and ignored the membrane capacitive current 
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because we simply use Dirichlet boundary conditions for 𝜙 at both ends of the gating 

pore in Eq. (S.3). Actually, capacitive current of the membrane in parallel with the 

gating pore would be much larger than vestibule capacitive current. Following the 

idea of the experiment [4], we calculated 𝐼(0, 𝑡) with V rising from -150mV to 

-140mV at t=10, and dropping back to -150mV at t=150. We chose from -150mV to 

-140mV because essentially none of the arginines move across the hydrophobic plug 

in this hyperpolarized region. The voltage step quickly charges and discharges 

solution EDL in vestibules, and the computed time course of 𝐼(0, 𝑡) is just two spikes 

at on and off of the command potential. Subtracting this hyperpolarized 𝐼(0, 𝑡), 

multiplied by a proportion factor (due to the linearity of capacitive current), from its 

original counterpart will then remove the spikes, and the unspiked 𝐼(0, 𝑡) is shown in 

Fig. 5(a). In preliminary calculations with the model, when the command voltage 

pulse rises faster, the early spike becomes larger and is still visible even after 

subtraction, suggesting that is the origin of the early transient gating current in 

experiments [12-14]. 

11. Removing linear capacitive current to obtain gating current in experiments  

 Our computations have limited fidelity at short times because of time step 

limitations in integrating stiff systems. The spike artifacts are one example, described 

previously. Experimental measurements [12,15] of the fast transient gating current are 

fascinating and our calculations will be extended to explore more of them in future 

study by using greathigher resolution in time. 

 A more general consideration is the subtraction procedure used in experiments 

to isolate gating current from currents arising from other sources. Channels and their 

voltage sensors are embedded in lipid membranes, therefore they are ‘in parallel’ with 

large capacitive currents of the lipid bilayer. The lipid membrane has a large 

capacitance ( 𝐶𝑙𝑖𝑝𝑖𝑑 ≅ 8 × 10−7 farads/cm2 ) that has nothing to do with the current 

produced by charge movement in the voltage sensor. Fortunately, the 

capacitance 𝐶𝑙𝑖𝑝𝑖𝑑  is a nearly ideal circuit element and the current to charge it is 

entirely a displacement current accurately described by 𝑖𝑐𝑎𝑝 = 𝐶𝑙𝑖𝑝𝑖𝑑 ∂V ∂t⁄  with a 

single constant 𝐶𝑙𝑖𝑝𝑖𝑑. V is the voltage across the lipid capacitor. Note that 𝑖𝑐𝑎𝑝 does 

not include any current or flux of charge carried across the lipid.  

In experimental measurements, 𝑖𝑐𝑎𝑝 is always present. Experimental 

measurements always mix the displacement currents of lipid membrane and voltage 

sensor. Lipid membrane current usually dominates the measurement of gating currents 

in native preparations and remains large in systems mutated to have unnaturally large 

numbers of voltage sensors. 

 A procedure to remove the lipid membrane current is needed if the gating current 

of the voltage sensor is to be measured. The procedure introduced by [16] has been 



33 

used ever since in the improved P/4 version developed by [17] reviewed and discussed 

in [18]. Also, see another approach in [19] and [20]. Schneider and Chandler’s 

procedure [19] estimates the so-called linear current 𝑖𝑥 = 𝐶𝑥 ∂V ∂t⁄  in conditions in 

which the voltage sensor and 𝐶𝑥 behave as ideal circuit elements. An ideal capacitor 

has a capacitance 𝐶𝑥 independent of voltage, time, current, or ionic composition. The 

Schneider procedure then subtracts that linear current 𝑖𝑥 from the total current 

measured in conditions in which the voltage sensor does not behave as an ideal 

capacitor. The leftover estimates the nonlinear properties of the charge movement in 

the voltage sensor. That is to say, the leftover estimates the charge movement of the 

voltage sensor that is not proportional to the size of the voltage step used in the 

measurement. The leftover is called gating current here and in experimental papers. 

The gating current reported in experiments is missing a component of the 

displacement current of the voltage sensor, if it uses the linear subtraction to estimate 

𝑖𝑥. These procedures remove more than the current through the lipid membrane 

capacitor 𝑖𝑐𝑎𝑝. Rather, these procedures produce current estimates that contain the 

lipid membrane current 𝑖𝑐𝑎𝑝  plus current through any structures in the membrane (‘in 

parallel’) in which current follows the law 𝑖𝑥 = 𝐶𝑥 ∂V ∂t.⁄   

Clearly, some of the current produced by movements of the arginines in the 

voltage sensor will be a linear displacement current, a linear component of gating 

current and it would not be present in the reported gating current determined by any of 

the linear subtraction procedures. Other systems may contribute to the linear 

displacement current as well, for example, i) all sorts of experimental and 

instrumentation artifacts and ii) displacement current in the conduction channel itself. 

The conduction channel of field effect transistors produces a large displacement 

current often characterized as a capacitance that involves diffusion and is described by 

drift diffusion equations quite similar to the PNP equations of the open conduction 

channel. 

Because our procedure subtracts a hyperpolarized current with arginines that do 

not move at that voltage, then it removes all the currents carried by arginine 

movement linear in voltage. Most systems have substantial motions that are linear in 

voltage (even if the system is labeled ‘nonlinear’). The linear term is present in most 

systems, just as it is present in most Taylor expansions of nonlinear functions.  

 The linear component missed in experiments, and removed in these 

calculations, may have functional and structural significance. The voltage sensor 

works by sensing voltage, for example, by producing a motion of arginines. That 

motion—the response of the voltage sensor in this model—includes a linear 

component. The signal passed to the conduction channel, to control gating, is likely to 

include or depend on the linear component of sensor function. Confusion will result if 
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a significant linear component exists and is ignored when a model is created that links 

the voltage sensor to the gating process of the conduction channel. Direct 

measurements of the movement of arginines (e.g., with optical methods) are likely to 

include the linear component and so should not agree with experimental 

measurements of gating current or with the currents reported here if the linear 

component exists and is significant in size. 
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