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Abstract The ellipsoidal statistical (ES) model of the Boltzmann equation for a
polyatomic gas, proposed by Andries et al. [P. Andries et al., Eur. J. Mech. B/Fluids
19, 813 (2000)], is extended to a polyatomic gas with temperature-dependent spe-
cific heats (thermally perfect gas). Then, the new model equation is used to in-
vestigate the structure of a plane shock wave with special interest in CO2 gas,
which is known to have a very large bulk viscosity, and in the case of relatively
strong shock waves. The numerical and asymptotic analyses are performed in par-
allel to the previous paper by two of the present authors [S. Kosuge and K. Aoki,
Phys. Rev. Fluids 3, 023401 (2018)], where the structure of a shock wave in CO2
gas was investigated using the ES model for a polyatomic gas with constant spe-
cific heats (calorically perfect gas). From the numerical and analytical results, the
effect of temperature-dependent specific heats is clarified.

Keywords Boltzmann equation · ellipsoidal statistical model · polyatomic gas ·
temperature-dependent specific heats · shock-wave structure

1 Introduction

In recent years, the study of nonequilibrium polyatomic gas flows based on ki-
netic theory becomes increasingly important in various applications involving
high-temperature circumstances [36,38,30,12]. However, the original Boltzmann
equation for a polyatomic gas is usually presented in rather abstract forms [17,
16,29,9], so that it is not possible to apply it immediately to practical problems.
Therefore, some simplified and tractable models for collision integrals involving
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the energy transfer between the translational and internal modes have been pro-
posed. One approach is to model the collision terms partially in the level of the
original Boltzmann equation [11,43,19], while the other is to replace the entire
collision terms by simpler models of the Bhatnagar–Gross–Krook (BGK) type
[37,55,49,41,10,3,4,9,7], of the Fokker–Planck type [13,21,35], of the type of
ellipsoidal statistical (ES) model [25,2], and of other types [23,46,42,39]. Some
of the models in the latter category, which we call model Boltzmann equations,
have been applied to fundamental problems in kinetic theory, such as the velocity-
slip and temperature-jump problems [32,34,47,24].

One of the recent examples of the application of the model Boltzmann equa-
tions is the study of the structure of a plane shock wave in a polyatomic gas using
the ES model, which was proposed in [2] and rederived in a systematic way in
[14], with special interest in gases with large bulk viscosity [28,27]. The study
was motivated by interesting results based on the extended thermodynamics that
made a classification of the profile of a plane shock wave in carbon dioxide (CO2)
gas [51,52,45,53]. In [27], a direct numerical analysis using the ES model was
carried out, and the result of this kinetic approach showed good agreement with
the result in [52] obtained by the macroscopic approach (see also [54]).

The ES model used in [28,27] is constructed for a gas in which the specific
heat at constant volume Cv and that at constant pressure Cp are constants. Such an
ideal gas is called calorically perfect gas [31] (it is also called a polytropic gas in
the literature). However, according to the literature, Cv, Cp, and thus the ratio of
the specific heats γ = Cp/Cv generally depend on the temperature. For instance,
γ ≈ 1.3 at 290K and γ ≈ 1.18 at 1000K for CO2 gas. Therefore, in [27], γ was
set to be a constant according to the overall behavior of CO2 gas. There seemed
to be no problem for a weak shock in which the temperature variation across the
shock is not large. However, for a strong shock, where the temperature variation
is large, one cannot expect the correct behavior from the model with a constant γ .
Therefore, as the continuation of the previous work [28,27], we have decided to
investigate the same problem, i.e., the structure of a plane shock wave (for CO2
gas), using a model Boltzmann equation that allows the temperature dependence
of Cv, Cp, and thus γ . Incidentally, an ideal gas with temperature-dependent Cv, Cp
and γ is called thermally perfect gas [31] (it is also called a non-polytropic gas in
the literature).

Several model Boltzmann equations for a gas with temperature-dependent Cv
and Cp have been proposed, such as the models proposed in [49,42,10,3,4,7], and
we can utilize one of them for the present purpose. In [28,27], a careful numerical
analysis, based on the ES model, was carried out. In addition, a systematic asymp-
totic analysis has been performed for large bulk viscosity to describe the slow re-
laxation of the internal modes inside a shock wave in CO2 gas. In fact, the asymp-
totic analysis led to a system of ordinary differential equations for macroscopic
quantities that can be solved analytically, and the resulting solution described the
slow relaxation very well. In the present study, we are aiming at reproducing these
results for CO2 gas in the case where the specific heats are temperature dependent.
However, if we use a model Boltzmann equation whose structure is completely
different from the ES model, we expect to encounter difficulties in the analysis,
comparison, and interpretation. For this reason, we have decided to extend the
ES model in [2] to the case of temperature-dependent specific heats first and then
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apply the resulting model Boltzmann equation to the problem of the shock-wave
structure.

The paper is organized as follows. After this introduction, we propose a new
ES model for a polyatomic gas with temperature-dependent specific heats in Sect.
2.1 and summarize its basic properties and transport coefficients in Sects. 2.2 and
2.3, making occasional use of Appendices. Section 3 is devoted to the study of
the structure of a shock wave on the basis of the model proposed in Sect. 2.1. To
be more specific, the problem is formulated and reduced in Sects. 3.1–3.4, and
numerical analysis is performed in Sects. 3.5 and 3.6. In Sect. 3.7, we summarize
the result of the asymptotic analysis for large bulk viscosity. A short concluding
remarks are given in Sect. 4.

2 Model equation and its basic properties

In the present section, we will propose a new kinetic model for an ideal polyatomic
gas with temperature-dependent specific heats. Our starting point is the ES model
proposed in [2] for a polyatomic gas with constant specific heats. However, we
adopt a different representation from the original one in [2], that is, we take the
ES model in the form used in [50,24] as our starting point. The difference between
these two representations will be discussed at the end of Sect. 2.1.

2.1 Model equation

Let us consider a polyatomic rarefied gas. Let t be the time variable, XXX (or Xi) the
position vector in the physical space, ξξξ (or ξi) the molecular velocity, and E the
energy associated with the internal modes per unit mass. We denote the number of
the gas molecules contained in an infinitesimal volume dXXXdξξξ dE around a point
(XXX , ξξξ , E ) in the seven-dimensional space consisting of XXX , ξξξ , and E at time t by

1
m

f (t, XXX , ξξξ , E )dXXXdξξξ dE , (1)

where m is the mass of a molecule. We call f (t, XXX , ξξξ , E ) the velocity/energy dis-
tribution function of the gas molecules.

In the present study, we consider the thermally perfect gas (or non-polytropic
gas), for which the specific heat at constant volume Cv and that at constant pressure
Cp are both functions of the temperature T . We will propose a model Boltzmann
equation for such a gas, which is an extension of the ES model ([2,14]) expressed
in the form used in [50,24].

Let us consider a system containing a gas at an equilibrium state at rest at
temperature T . If we consider the case where Cv is constant, denote by D the
internal degrees of freedom of the gas, and assume the equipartition law, then the
internal energy of the gas per unit mass E(T ) is expressed as

E(T ) = (3+D)RT/2, (2)

where R is the gas constant per unit mass, i.e., R= k/m with k being the Boltzmann
constant. In this case, Cv = (3+D)R/2.
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Next, we consider the case where Cv depends on the temperature. Let us sup-
pose that Cv in the equilibrium state is a given function Cv(T ) of T that satisfies
Cv(T )> 3R/2. Then, the internal energy E(T ) in this state is expressed as

E(T ) =
∫ T

T∗
Cv(s)ds+E∗, (3)

where T∗ is the possible minimum temperature of the system and E∗ is assumed
to be E∗ > 3RT∗/2. If the value of E is given as E(T ) = e, then T is determined
uniquely as T = E−1(e), where E−1 is the inverse function of E. In (2), E(T ) is
defined in such a way that E(0) = 0. One way to keep consistency between (2)
and (3) is to define E∗ as E∗ = T∗Cv(T∗). Then, for T close to T∗, (3) becomes
E(T ) = (T − T∗)Cv(T∗)+O(T − T∗)+ T∗Cv(T∗) = TCv(T∗)+O(T − T∗), which
gives a consistent result E(T∗) = T∗Cv(T∗).

Now, using the relation (2), we extend D as a continuous function of T defined
by

D(T ) =
2

RT
E(T )−3, (4)

for an arbitrarily given E(T ) [or Cv(T )]. Then, since E(T ) > 3RT/2 for T ≥ T∗,
D(T ) > 0 holds for T ≥ T∗. To be consistent with (3), D(T∗) should be D(T∗) =
2E∗/RT∗−3.

Let us then consider the case where the gas is not in the equilibrium state. We
extend Cv(T ), E(T ), D(T ), and the inverse function E−1 to the nonequilibrium
case. In particular, when the internal energy is given as E = e(t, XXX), where e is a
given function of t and XXX , we define the temperature T (t, XXX) by T =E−1(e). Thus,
D(T ) with this temperature T (t, XXX) is an extended internal degrees of freedom in
the nonequilibrium case. We further define the extended ratio of the specific heats
γ(T ) as

γ(T ) =
Cp(T )
Cv(T )

=
Cv(T )+R

Cv(T )
, (5)

with the temperature T (t, XXX), using the relation Cp =Cv+R. Since Cv(T )> 3R/2,
γ(T )< 5/3 holds. With these preparations, we define our model Boltzmann equa-
tion in the following.

The velocity/energy distribution function of the gas molecules f is governed
by the equation of the following form:

∂ f
∂ t

+ξi
∂ f
∂Xi

= Q( f ), (6)

with

Q( f ) = Ac(T )ρ(G − f ). (7)

Here,

G =
ρE δ/2−1

(2π)3/2[det(T)]1/2(RTrel)δ/2Γ (δ/2)

× exp
(
−1

2
(T−1)i j(ξi − vi)(ξ j − v j)−

E

RTrel

)
, (8a)
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(T)i j = (1−θ)[(1−ν)RTtrδi j +ν pi j/ρ]+θRT δi j, (8b)

ρ =
∫ ∫ ∞

0
f dE dξξξ , vi =

1
ρ

∫ ∫ ∞

0
ξi f dE dξξξ , (8c)

pi j =
∫ ∫ ∞

0
(ξi − vi)(ξ j − v j) f dE dξξξ , (8d)

T = E−1(e), δ = D(T ) = 2e/RT −3, (8e)
Ttr = 2etr/3R, Tint = 2eint/Rδ , Trel = θT +(1−θ)Tint, (8f)

where e, etr, and eint are defined by

e = etr + eint, etr =
1

2ρ

∫ ∫ ∞

0
|ξξξ − vvv|2 f dE dξξξ , eint =

1
ρ

∫ ∫ ∞

0
E f dE dξξξ .

(9)

In (7)–(9), ρ is the density, vvv (or vi) is the flow velocity, pi j is the stress tensor, e is
the internal energy per unit mass, etr is that associated with the translational mo-
tion, eint is that associated with the internal modes, T is the temperature, Ttr is the
temperature associated with the translational motion, Tint is the temperature asso-
ciated with the energy of the internal modes, dξξξ = dξ1dξ2dξ3, and the domain of
integration with respect to ξξξ is the whole space of ξξξ . The symbol δi j indicates the
Kronecker delta, and ν ∈ [−1/2, 1) and θ ∈ [0, 1] are parameters, whose relation
with the transport coefficients will be shown later [cf. (27)]. In addition, Ac(T ) is
a function of T such that Ac(T )ρ is the collision frequency of the gas molecules,
Γ (z) is the gamma function defined by

Γ (z) =
∫ ∞

0
sz−1e−sds, (10)

T is the 3× 3 positive-definite symmetric matrix whose (i, j) component is de-
fined by (8b), and det(T) and T−1 are, respectively, its determinant and inverse.
Here and in what follows, we basically use the summation convention, i.e., aibi =
∑3

i=1 aibi, ci jaib j = ∑3
i, j=1 ci jaib j, etc.

Note that all the macroscopic quantities contained in G are generated from f .
To be more specific, (i) ρ , vvv, pi j, etr, eint, and e are obtained by (8c), (8d), and
(9); (ii) T and then δ are determined by (8e) using the inverse function E−1 of
the function E [cf. (3)]; (iii) Ttr, Tint, and Trel are determined by (8f), and then
T is established by (8b). Since e = etr + eint = (3Ttr + δTint)R/2 and also e =
(3+δ )RT/2, we have the relation

T =
3Ttr +δTint

3+δ
. (11)

The major difference of the present model from the original ES model is that δ
is not a constant but is a function of the temperature T . Therefore, (11) gives an
implicit relation for T , Ttr, and Tint. However, to avoid complexity of the notation,
we just denote it by δ rather than δ (T ) here and in what follows.
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The pressure p and the heat-flow vector qi are given by

p = RρT, (12a)

qi =
∫ ∫ ∞

0
(ξi − vi)

(
1
2
|ξξξ − vvv|2 +E

)
f dE dξξξ , (12b)

where (12a) is the equation of state.
In [2], the case of θ = 0 is excluded because the bulk viscosity becomes in-

finitely large in this case [cf. (27b)]. However, as shown in [27], the case of θ = 0
plays an important role in describing the structure of a shock wave in a gas with
large bulk viscosity. Therefore, we have included this case in the model (7) and
let the admissible range of θ be θ ∈ [0, 1]. In Sect. 2.2, the case of θ = 0 will be
treated separately.

In [2], the energy variable E , which is denoted by ε there, is assumed to be
expressed as E = I2/δ in terms of a variable I and a constant δ , and I is used as
an independent variable (see [50]). To be more specific, the distribution function
in [2], which is denoted by f A(t, XXX , ξξξ , I) here, is defined in such a way that

1
m

f A(t, XXX , ξξξ , I)dXXXdξξξ dI, (13)

indicates the number of the molecules with position in dXXX (around XXX), velocity in
dξξξ (around ξξξ ), and the variable I in dI (around I) at time t. Therefore, the relation
between f A and our f is as follows:

f (t, XXX , ξξξ , E ) = (δ/2)E δ/2−1 f A(t, XXX , ξξξ , E δ/2). (14)

In addition, Λδ in [2] is expressed as

Λ−1
δ = (δ/2)Γ (δ/2). (15)

The representation of the ES model using E is equivalent to that using I as far as a
polyatomic gas with constant specific heats is concerned. However, our new model
(6), which is an extension based on the representation using E , is, in general,
different from a model obtained by a similar extension from the representation
using I.

An extension of the BGK model to a gas with temperature-dependent spe-
cific heats, which is based on the E -representation and is along the same line as
the present work, has been proposed independently in [7]. On the other hand, a
sophisticated extension of the BGK model using the I-representation for each of
rotational energy and vibrational energy was proposed recently in [3,4].

2.2 Basic properties

In this subsection, we summarize some basic properties of the model proposed
in Sect. 2.1. Here, we assume that θ ̸= 0. The case where θ = 0 is discussed in
Appendix A.
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Proposition 1 (conservation): For an arbitrary function f (t, XXX , ξξξ , E ), the follow-
ing relation holds: ∫ ∫ ∞

0
φrQ( f )dE dξξξ = 0, (16)

where φr (r = 0, ..., 4) are the collision invariants, i.e.,

φ0 = 1, φi = ξi (i = 1, 2, 3), φ4 =
1
2
|ξξξ |2 +E . (17)

Proposition 2 (equilibrium): The vanishing of the collision term Q( f ) = 0 is
equivalent to the fact that f is the following local equilibrium distribution:

feq =
ρ̄E δ̄/2−1

(2πRT̄ )3/2(RT̄ )δ̄/2Γ (δ̄/2)
exp
(
−|ξξξ − v̄vv|2

2RT̄
− E

RT̄

)
, (18)

where ρ̄ , v̄vv, and T̄ are arbitrary functions of t and XXX , and δ̄ = D(T̄ ).

Proposition 3: For an arbitrary function f (t, XXX , ξξξ , E ), the following inequality
holds: ∫ ∫ ∞

0

(
ln

f
E δ/2−1

)
Q( f )dE dξξξ ≤ 0, (19)

and the equality sign holds if and only if f = feq in (18).

Now, we give the outlines of the proofs for Propositions 1, 2, and 3.

Proof of Proposition 1: From the definition, it follows immediately that∫ ∫ ∞

0
f dE dξξξ = ρ,

∫ ∫ ∞

0
ξi f dE dξξξ = ρvi,

∫ ∫ ∞

0
E f dE dξξξ = ρeint,

(20a)∫ ∫ ∞

0
ξiξ j f dE dξξξ = pi j +ρviv j,

∫ ∫ ∞

0
ξ 2

k f dE dξξξ = 2ρetr +ρv2
k , (20b)∫ ∫ ∞

0

(
1
2

ξ 2
k +E

)
f dE dξξξ = ρe+

1
2

ρv2
k . (20c)

On the other hand, the moments of G are obtained, in the same way as Appendix
A1 in [27], in the following form:∫ ∫ ∞

0
G dE dξξξ = ρ,

∫ ∫ ∞

0
ξiG dE dξξξ = ρvi,

∫ ∫ ∞

0
E G dE dξξξ = ρ

δRTrel

2
,

(21a)∫ ∫ ∞

0
ξiξ jG dE dξξξ = ρ(T)i j +ρviv j,∫ ∫ ∞

0
ξ 2

k G dE dξξξ = 3(1−θ)RρTtr +3θRρT +ρv2
k , (21b)
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∫ ∫ ∞

0

(
1
2

ξ 2
k +E

)
G dE dξξξ =

3+δ
2

RρT +
1
2

ρv2
k = ρe+

1
2

ρv2
k , (21c)

where δ = D(T ) and e = E(T ), together with (4), have been used to obtain the
last equality in (21c). Equation (16) with (17) follows directly from (20) and (21).
□

Proof of Proposition 2: We first suppose that f = feq and show that G reduces to
feq, i.e., Q( f ) = 0. It follows from (8c), (8d), and (9) that ρ = ρ̄ , vvv = v̄vv, pi j =

ρ̄RT̄ δi j, etr = 3RT̄/2, eint = δ̄RT̄/2, and e = (3+ δ̄ )RT̄/2. Because of δ̄ = D(T̄ )
and (4), we find that e = [3+D(T̄ )]RT̄/2 = E(T̄ ). Therefore, from (8e), we obtain
T = T̄ and δ = δ̄ . Then, (8f) gives Ttr = Tint = Trel = T̄ , so that (8b) leads to
(T)i j = RT̄ δi j. Since det(T) = (RT̄ )3 and (T−1)i j = δi j/RT̄ , we obtain G = feq.
Therefore, Q( f ) = 0 holds.

Conversely, we show that if we suppose Q( f ) = 0, then f is of the form of
(18) with appropriate ρ̄ , v̄vv, T̄ , and δ̄ = D(T̄ ) and does not take other functional
forms. Suppose that f = G holds, where G is constructed on the basis of f . Then,
by replacing f with G in (8c), (8d), and (9) and referring to (21), we obtain ρ = ρ ,
vvv = vvv, pi j = ρ(T)i j, etr = pkk/2ρ = (T)kk/2, eint = δRTrel/2. With these results,
(8b) and (8f) give the following relations:

[1− (1−θ)ν ](T)i j = (1−θ)(1−ν)RTtrδi j +θRT δi j, (22a)
Ttr = (T)kk/3R, Tint = Trel. (22b)

Substituting (T)kk obtained from (22a) into the first equation of (22b), we obtain
θ(T −Ttr) = 0. Using the second equation of (22b) in the last equation of (8f), we
have θ(T −Tint) = 0. Because θ ̸= 0, Ttr = Tint = T holds. In this case, (22a) gives
(T)i j = RT δi j, so that (T)kk = 3RT and thus e = etr + eint = (3+ δ )RT/2 hold.
Noting that e = E(T ) and δ = D(T ), we recover (4). Since det(T) = (RT )3 and
(T−1)i j = δi j/RT , G and thus f are reduced to feq with ρ̄ = ρ , v̄vv = vvv, T̄ = T , and
δ̄ = δ = D(T ). □

Proof of Proposition 3: For each t and X , the quantity δ , which is a function of T ,
is a constant. Therefore, the proof for the model equation with constant δ , which
is given in [2], holds for the present model. □

Here, we should note that Proposition 3 does not lead to the H theorem. Let
us define Hδ ( f ) by

Hδ ( f ) =
∫ ∫ ∞

0
f ln

f
E δ/2−1 dE dξξξ . (23)

If we multiply (6) by 1+ ln( f/E δ/2−1) and integrate with respect to E from 0 to
∞ and with respect to ξξξ over the whole space, we can show that the right-hand
side is nonnegative because of Proposition 3. However, the left-hand side cannot
be reduced to the form of the H theorem because δ depends on t and XXX through
T . We can only show the following:
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Proposition 4 (H theorem for spatially homogeneous case): If f does not de-
pend on XXX , the following inequality holds:

dHδ/dt ≤ 0, (24)

and the equality sign holds if and only if f is the local equilibrium feq [cf. (18)].

Proof of Proposition 4: If f = f (t, ξξξ ), (6) reduces to ∂ f/∂ t = Q( f ). We multiply
this equation by (1/2)|ξξξ − vvv|2 +E , integrate with respect to E from 0 to ∞ and
with respect to ξξξ over the whole space, and make use of (9) and (16). Then, we
have de/dt = 0. This means that T is constant, so that δ is constant. Therefore, if
we differentiate (23) with respect to t, we have

dHδ
dt

=
∫ ∫ ∞

0

(
1+ ln

f
E δ/2−1

)
∂ f
∂ t

dE dξξξ =
∫ ∫ ∞

0

(
ln

f
E δ/2−1

)
Q( f )dE dξξξ ≤ 0,

(25)

because of Proposition 3. □

2.3 Transport coefficients

With the model proposed in Sect. 2.1, we can carry out the Chapman–Enskog ex-
pansion [18,22,48] to obtain the Navier–Stokes equations for a compressible fluid
(the so-called compressible Navier–Stokes equations) and the associated transport
coefficients. In this section, we just summarize the results of the Navier–Stokes
equations and the transport coefficients omitting the process, since the Chapman–
Enskog expansion is a standard procedure. The details of the analysis will be given
elsewhere. In this section, we assume that θ ̸= 0.

The compressible Navier–Stokes equations derived by the Chapman–Enskog
expansion are summarized as follows:

∂ρ
∂ t

+
∂ρv j

∂X j
= 0, (26a)

∂ρvi

∂ t
+

∂ρviv j

∂X j
=− ∂ p

∂Xi
+

∂
∂X j

[
µ(T )

(
∂vi

∂X j
+

∂v j

∂Xi
− 2

3
∂vk

∂Xk
δi j

)]
+

∂
∂Xi

[
µb(T )

∂vk

∂Xk

]
, (26b)

∂
∂ t

[
ρ
(

3+D(T )
2

RT +
1
2
|vvv|2
)]

+
∂

∂X j

[
ρv j

(
5+D(T )

2
RT +

1
2
|vvv|2
)]

=
∂

∂X j

[
λ (T )

∂T
∂X j

]
+

∂
∂X j

[
µ(T )vi

(
∂vi

∂X j
+

∂v j

∂Xi
− 2

3
∂vk

∂Xk
δi j

)]
+

∂
∂X j

[
µb(T )v j

∂vk

∂Xk

]
, (26c)



10

with p = RρT [cf. (12a)]. Here, the viscosity µ(T ), the bulk viscosity µb(T ), and
the thermal conductivity λ (T ) are, respectively, given by

µ(T ) =
1

1−ν +θν
RT

Ac(T )
, (27a)

µb(T ) =
1
θ

[
2
3
− R

Cv(T )

]
RT

Ac(T )
, (27b)

λ (T ) = [Cv(T )+R]
RT

Ac(T )
. (27c)

Let us denote by Pr the Prandtl number defined by Pr = Cpµ/λ = (Cv +R)µ/λ .
Then, we have the following expression of Pr:

Pr =
1

1−ν +θν
. (28)

Making use of (28) and the ratio of the specific heats γ [cf. (5)], we can rewrite µb
and λ in the following form:

µb(T ) =
1
θ

[
5
3
− γ(T )

]
µ(T )

Pr
, λ (T ) =

γ(T )R
γ(T )−1

RT
Ac(T )

. (29)

3 Shock-wave structure

In this section, we apply the model equation proposed in Sect. 2 to the problem
of shock-wave structure. The shock wave is a compression wave across which the
physical quantities undergo rapid changes over a distance of some tens of the mean
free path. Therefore, to describe the structure inside the shock wave, one has to use
kinetic theory or the Boltzmann equation. In fact, the structure of a standing plane
shock wave is one of the most fundamental problems in kinetic theory and has
been investigated by many authors. Since the survey of previous work is beyond
the scope of the present paper, we just refer to some standard textbooks [26,20,15,
8,16,48] containing this subject and move on to the problem that will be tackled
in the present paper, that is, the shock-wave structure for a polyatomic gas with
large bulk viscosity.

Motivated by some recent and interesting results based on extended thermo-
dynamics [51,52,45,53], we investigated the structure of a plane shock wave in
carbon dioxide (CO2) gas, which is known to have very large bulk viscosity, nu-
merically using the ES model for a gas with constant specific heats (calorically
perfect or polytropic gas) [28,27]. In [27], some comparisons were made between
the result based on the ES model and that based on extended thermodynamics
[52], and good agreement was shown. However, the comparisons were restricted
to rather weak shock waves in which the temperature variation is not large. The
reason is that [52,53] used the data for CO2 gas with temperature-dependent spe-
cific heats, whereas [27] used the ES model with constant specific heats. For a
strong shock wave, the effect of temperature-dependent specific heats becomes
more important because of the large temperature variation across the shock. In or-
der to understand this effect, we try to carry out the numerical analysis of the shock
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profile, with special interest in stronger shock waves, using the model for a gas
with temperature-dependent specific heats (thermally perfect or non-polytropic
gas) proposed in Sect. 2.

3.1 Problem

Let us consider a stationary plane shock wave standing in a flow of an ideal
polyatomic gas. We take the X1 axis perpendicular to the shock wave. The gas
at upstream infinity (X1 → −∞) is in an equilibrium state with density ρ−, flow
velocity vvv− = (v−, 0, 0) (v− > 0), and temperature T−, and that at downstream
infinity (X1 → ∞) is in another equilibrium state with density ρ+, flow velocity
vvv+ = (v+, 0, 0) (v+ > 0), and temperature T+. We investigate the steady behavior
of the gas under the following assumptions:

(i) The specific heat at constant volume Cv is a given function Cv(T ) of the tem-
perature T (thermally perfect or non-polytropic gas).

(ii) The behavior of the gas is described by the ES model of the Boltzmann equa-
tion proposed in Sect. 2.

(iii) The problem is spatially one dimensional, so that the physical quantities are
independent of X2 and X3.

Let us denote by M− the Mach number of the flow at upstream infinity and by
γ− the ratio of the specific heats there, i.e.,

M− =
v−√

γ−RT−
, γ− = γ(T−) =

Cv(T−)+R
Cv(T−)

. (30)

The downstream quantities ρ+, v+, and T+ are related with the upstream quantities
ρ−, v−, and T− and the upstream Mach number M− by the Rankine–Hugoniot
relations. To be more specific,

Proposition 5 (Rankine–Hugoniot relations): When θ ̸= 0, the ratios ρ+/ρ−,
v+/v−, and T+/T− are expressed in the following form:

ρ+

ρ−
=

(
v+
v−

)−1

,
v+
v−

=
1+ γ−M2

−−
√

2γ−M2
−d̂E(τ)+1

γ−M2
−

,
T+
T−

= τ,

(31)

where the function d̂E(x) is defined by

d̂E(x) =
1
R

∫ x

1
Cv(T−s)ds, (32)

and τ is the solution, such that τ > 1, of the following equation:

τ +2d̂E(τ)+
1

γ−M2
−
−
(

1
√γ−M−

+
√

γ−M−

)√
2d̂E(τ)+

1
γ−M2

−
= 0. (33)
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If Cv(T ) is a monotonically increasing function of T , such τ is unique.

The proof of Proposition 5 is given in Appendix B.1. Although we have not been
able to show that the Mach number at downstream infinity, M+ = v+/(γ+RT+)1/2

where γ+ = γ(T+), is less than 1 for M− greater than 1, we have confirmed it
numerically. Therefore, we will assume that M− > 1 and M+ < 1 throughout the
present paper. The Rankine–Hugoniot relations take a different form when θ = 0.
They are shown as Proposition 5′ in Appendix B.2. For a gas with large bulk
viscosity such as CO2 gas, the shock profiles exhibit a double layer structure con-
sisting of a thin front layer and a thick rear layer, except for M− relatively close
to 1. It is shown in [27] that the thin front shock is nothing but a shock wave for
θ = 0 (µb/µ = ∞) whose jumps are described by the Rankine–Hugoniot relations
given as Proposition 5′.

3.2 Basic equation

The present shock-structure problem is a time-independent and spatially one-
dimensional problem where f is expressed as f = f (X1, ξξξ , E ). Therefore, the
basic equation is (6) with ∂ f/∂ t = ∂ f/∂X2 = ∂ f/∂X3 = 0. Consistently, all
the macroscopic quantities in (7)–(9) and (12) are the functions of X1 only, and
vvv = (v1, 0, 0).

The boundary conditions at upstream and downstream infinities are expressed
in the following form using the equilibrium distribution (18):

f =
ρ−E δ−/2−1

(2πRT−)3/2(RT−)δ−/2Γ (δ−/2)
exp
(
−
(ξ1 − v−)2 +ξ 2

2 +ξ 2
3

2RT−
− E

RT−

)
,

(X1 →−∞), (34a)

f =
ρ+E δ+/2−1

(2πRT+)3/2(RT+)δ+/2Γ (δ+/2)
exp
(
−
(ξ1 − v+)2 +ξ 2

2 +ξ 2
3

2RT+
− E

RT+

)
,

(X1 → ∞), (34b)

where we have let δ− = D(T−) and δ+ = D(T+).
Now, we introduce the dimensionless quantities (x1, ζi, Ê , f̂ , Ĝ , Âc, ρ̂ , v̂i, p̂i j,

êtr, êint, ê, T̂tr, T̂int, T̂ , T̂rel, T̂i j, p̂, q̂i, Ê, Ĉv) corresponding to (X1, ξi, E , f , G , Ac,
ρ , vi, pi j, etr, eint, e, Ttr, Tint, T , Trel, Ti j, p, qi, E, Cv) by the following relations:

x1 = X1/l−, ζi = ξi/(2RT−)1/2, Ê = E /RT−, (35a)

( f̂ , Ĝ ) = ( f ,G )(2RT−)5/2/2ρ−, Âc(T̂ ) = Ac(T )/Ac(T−), (35b)

ρ̂ = ρ/ρ−, v̂i = vi/(2RT−)1/2, p̂i j = pi j/p−, (35c)

(êtr, êint, ê) = (etr,eint,e)/RT−, (T̂tr, T̂int, T̂ , T̂rel) = (Ttr,Tint,T,Trel)/T−,
(35d)

T̂i j = Ti j/RT−, p̂ = p/p−, q̂i = qi/p−(2RT−)1/2, (35e)

Ê(T̂ ) = E(T )/RT−, Ĉv(T̂ ) =Cv(T )/R, (35f)
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where p− = Rρ−T−, and l− = (2/
√

π)(2RT−)1/2/Ac(T−)ρ− is the mean free path
of the gas molecules in the equilibrium state at rest at density ρ− and temperature
T−.

By using these dimensionless variables, (6) (with ∂ f/∂ t = ∂ f/∂X2 = ∂ f/∂X3 =
0) and (7)–(9) are recast in the following dimensionless form:

ζ1
∂ f̂
∂x1

=
2√
π

Q̂( f̂ ), (36)

with

Q̂( f̂ ) = Âc(T̂ )ρ̂
(
Ĝ − f̂

)
. (37)

Here,

Ĝ =
ρ̂Ê δ/2−1

π3/2[det(T̂)]1/2 T̂ δ/2
rel Γ (δ/2)

× exp

(
−(T̂−1)i j(ζi − v̂i)(ζ j − v̂ j)−

Ê

T̂rel

)
, (38a)

(T̂)i j = (1−θ)[(1−ν)T̂trδi j +ν p̂i j/ρ̂]+θ T̂ δi j, (38b)

ρ̂ =
∫ ∫ ∞

0
f̂ dÊ dζζζ , v̂i =

1
ρ̂

∫ ∫ ∞

0
ζi f̂ dÊ dζζζ , (38c)

p̂i j = 2
∫ ∫ ∞

0
(ζi − v̂i)(ζ j − v̂ j) f̂ dÊ dζζζ , (38d)

T̂ = Ê−1(ê), δ = D̂(T̂ ), (38e)

T̂tr = 2êtr/3, T̂int = 2êint/δ , T̂rel = θ T̂ +(1−θ)T̂int, (38f)

where

ê = êtr + êint, êtr =
1
ρ̂

∫ ∫ ∞

0
|ζζζ − v̂vv|2 f̂ dÊ dζζζ , êint =

1
ρ̂

∫ ∫ ∞

0
Ê f̂ dÊ dζζζ ,

(39)

and Ê(T̂ ), whose inverse function is denoted by Ê−1, and D̂(T̂ ), which are the di-
mensionless versions of E(T ) [cf. (3)] and D(T ) [cf. (4)], respectively, are defined
by

Ê(T̂ ) =
∫ T̂

T̂∗
Ĉv(s)ds+ Ê∗, (40a)

D̂(T̂ ) =
2
T̂

Ê(T̂ )−3 [= D(T )], (40b)

with T̂∗ = T∗/T− and Ê∗ = E∗/RT−. Then, we find that the following relations
hold:

ê =
3+δ

2
T̂ , T̂ =

3T̂tr +δ T̂int

3+δ
. (41)
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Incidentally, the dimensionless pressure and heat-flow vector are expressed as

p̂ = ρ̂T̂ , q̂i =
∫ ∫ ∞

0
(ζi − v̂i)

(
|ζζζ − v̂vv|2 + Ê

)
f̂ dÊ dζζζ . (42)

The dimensionless form of the boundary conditions (34) is given by the fol-
lowing equations:

f̂ =
Ê δ−/2−1

π3/2Γ (δ−/2)
exp
(
−
[
(ζ1 − v̂−)2 +ζ 2

2 +ζ 2
3
]
− Ê

)
, (x1 →−∞),

(43a)

f̂ =
ρ̂+Ê δ+/2−1

(πT̂+)3/2T̂ δ+/2
+ Γ (δ+/2)

exp

(
−
(ζ1 − v̂+)2 +ζ 2

2 +ζ 2
3

T̂+
− Ê

T̂+

)
, (x1 → ∞),

(43b)

where

v̂− =
v−

(2RT−)1/2 =

√
γ−
2

M−, v̂+ =
v+

(2RT−)1/2 , ρ̂+ =
ρ+

ρ−
, T̂+ =

T+
T−

,

(44)

and δ− = D̂(1) and δ+ = D̂(T̂+). Note that

(ρ̂, v̂, T̂tr, T̂int)→
{
(1, v̂−, 1, 1), as x1 →−∞,
(ρ̂+, v̂+, T̂+, T̂+), as x1 → ∞,

(45)

and ρ̂+, v̂+, and T̂+ are given by the dimensionless version of the Rankine–
Hugoniot relations (31).

3.3 Similarity solution

We consider the similarity solution of the form

f̂ = f̂ (x1,ζ1,ζρ , Ê ), ζρ = (ζ 2
2 +ζ 2

3 )
1/2, (46)

which is compatible with the present problem. Then, the macroscopic quantities
are expressed as

ρ̂ = 2π
∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζρ f̂ dÊ dζ1dζρ , (47a)

v̂1 =
2π
ρ̂

∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζρ ζ1 f̂ dÊ dζ1dζρ , (47b)

v̂2 = v̂3 = 0, (47c)

p̂11 = 4π
∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζρ(ζ1 − v̂1)

2 f̂ dÊ dζ1dζρ , (47d)

p̂22 = p̂33 = 2π
∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζ 3

ρ f̂ dÊ dζ1dζρ , (47e)

p̂12 = p̂13 = p̂23 = 0, (47f)
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êtr =
2π
ρ̂

∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζρ

[
(ζ1 − v̂1)

2 +ζ 2
ρ

]
f̂ dÊ dζ1dζρ , (47g)

êint =
2π
ρ̂

∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζρ Ê f̂ dÊ dζ1dζρ , (47h)

q̂1 = 2π
∫ ∞

0

∫ ∞

−∞

∫ ∞

0
ζρ(ζ1 − v̂1)

[
(ζ1 − v̂1)

2 +ζ 2
ρ + Ê

]
f̂ dÊ dζ1dζρ , (47i)

q̂2 = q̂3 = 0. (47j)

In addition, Ĝ is reduced to the following form:

Ĝ =
ρ̂Ê δ/2−1

π3/2[(T̂)11]1/2(T̂)22 T̂ δ/2
rel Γ (δ/2)

exp

(
− (ζ1 − v̂1)

2

(T̂)11
−

ζ 2
ρ

(T̂)22
− Ê

T̂rel

)
,

(48)

where

(T̂)11 = (1−θ)[(1−ν)T̂tr +ν p̂11/ρ̂]+θ T̂ , (49a)

(T̂)22 = (T̂)33 = (1−θ)[(1−ν)T̂tr +ν p̂22/ρ̂]+θ T̂ , (49b)

(T̂)12 = (T̂)13 = (T̂)23 = 0. (49c)

3.4 Further reduction

Let us introduce the following three marginal distribution functions ϕ1, ϕ2, and ϕ3:

ϕ1(x1,ζ1) = 2π
∫ ∞

0

∫ ∞

0
ζρ f̂ (x1,ζ1,ζρ , Ê )dÊ dζρ , (50a)

ϕ2(x1,ζ1) = 2π
∫ ∞

0

∫ ∞

0
ζ 3

ρ f̂ (x1,ζ1,ζρ , Ê )dÊ dζρ , (50b)

ϕ3(x1,ζ1) = 2π
∫ ∞

0

∫ ∞

0
ζρ Ê f̂ (x1,ζ1,ζρ , Ê )dÊ dζρ , (50c)

whose independent variables are x1 and ζ1 only.
Now we use the similarity solution (46) and the resulting relations (47), (48),

and (49) in (36). If we multiply this equation by ζρ(1, ζ 2
ρ , Ê ) and integrate the

result with respect to Ê and ζρ from 0 to ∞ for the respective variables, we obtain
the system of integro-differential equations for ϕ1, ϕ2, and ϕ3, that is,

ζ1
∂ϕk

∂x1
=

2√
π

Âc(T̂ )ρ̂ (Ψk −ϕk) , (k = 1,2,3), (51)

where Ψ1

Ψ2

Ψ3

=
ρ̂

[π(T̂)11]1/2

 1

(T̂)22

T̂relδ/2

exp
(
− (ζ1 − v̂1)

2

(T̂)11

)
, (52a)

(T̂)11 = (1−θ)[(1−ν)T̂tr +ν p̂11/ρ̂]+θ T̂ , (52b)
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(T̂)22 = (1−θ)[(1−ν)T̂tr +ν p̂22/ρ̂]+θ T̂ , (52c)

ρ̂ =
∫ ∞

−∞
ϕ1dζ1, v̂1 =

1
ρ̂

∫ ∞

−∞
ζ1ϕ1dζ1, (52d)

p̂11 = 2
∫ ∞

−∞
(ζ1 − v̂1)

2ϕ1dζ1, p̂22 =
∫ ∞

−∞
ϕ2dζ1, (52e)

êtr =
1
ρ̂

∫ ∞

−∞

[
(ζ1 − v̂1)

2ϕ1 +ϕ2
]

dζ1, êint =
1
ρ̂

∫ ∞

−∞
ϕ3dζ1, (52f)

ê = êtr + êint, T̂ = Ê−1(ê), δ = D̂(T̂ ), (52g)

T̂tr = 2êtr/3, T̂int = 2êint/δ , T̂rel = θ T̂ +(1−θ)T̂int. (52h)

In addition, the heat-flow vector is expressed as

q̂1 =
∫ ∞

−∞
(ζ1 − v̂1)

[
(ζ1 − v̂1)

2ϕ1 +ϕ2 +ϕ3
]

dζ1. (53)

The boundary conditions for (51) can be obtained from (43) by the same pro-
cedure, i.e.,ϕ1

ϕ2

ϕ3

=
1

π1/2

 1
1

δ−/2

exp
(
−(ζ1 − v̂−)2) , (x1 →−∞), (54a)

ϕ1

ϕ2

ϕ3

=
ρ̂+

(πT̂+)1/2

 1
T̂+

T̂+δ+/2

exp
(
− (ζ1 − v̂+)2

T̂+

)
, (x1 → ∞). (54b)

3.5 Numerical analysis

We solve the boundary-value problem for ϕ1, ϕ2, and ϕ3, i.e., (51), (52), and
(54), numerically by a finite-difference method. Since the method is essentially
the same as that was used and explained in [27], we omit the description of the
method in the present paper. The only difference lies in the determination of the
temperature T̂ at each iteration step. Therefore, we explain the procedure to deter-
mine T̂ when the (dimensionless) specific heat at constant volume Ĉv is given as a
polynomial of T̂ .

Let us assume that Ĉv is given by

Ĉv(T̂ ) =
N

∑
k=0

ckT̂ k. (55)

In the present problem, the minimum temperature T∗ in (3) should be T−, so that
E∗=E(T−). Therefore, it follows from (4) that E∗=E(T−)= [3+D(T−)]RT−/2=
(3+δ−)RT−/2, or equivalently, Ê∗ in (40a) is given as Ê∗ = Ê(1) = (3+δ−)/2.
Thus, from (40a), we have

Ê(T̂ ) =
∫ T̂

1
Ĉv(s)ds+ Ê(1) =

N

∑
k=0

ck

k+1
(T̂ k+1 −1)+

3+δ−
2

. (56)
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Table 1 Downstream states for M− = 1.3 and 5. The corresponding values for constant Cv
[Cv(T ) =Cv(T−)] are shown in the parentheses

M− = 1.3 M− = 5
ρ+/ρ− 1.566 (1.554) 7.819 (6.199)
v+/(2RT−)1/2 0.666 (0.671) 0.513 (0.648)
T+/T− 1.141 (1.143) 3.723 (4.522)
δ+ 3.940 5.910
Cv(T+)/R 3.671 5.665
γ(T+) 1.272 1.177

Table 2 Downstream states for M− = 1.3 and 5 in the case of θ = 0 (or µb/µ = ∞). See the
caption of Table 1

M− = 1.3 M− = 5
M̃− 1.143 4.398
ρ+/ρ− 1.214 3.463
v+/(2RT−)1/2 0.860 1.159
T+/T− 1.060 (1.061) 2.947 (3.564)
Ttr+/T− 1.140 6.909
Tint+/T− 0.999 0.730
δ+ 3.918 5.362

Table 3 Values of ν and θ for Pr = 0.73 and (µb/µ)T=T− = 100, 200, 500, 1000, 2000, 5200,
and ∞

(µb/µ)T=T− 100 200 500 1000 2000 5200 ∞
−ν ×10 3.718 3.708 3.702 3.701 3.700 3.699 3.699
θ ×104 51.69 25.85 10.34 5.169 2.585 0.9941 0

In order to obtain T̂ satisfying Ê(T̂ ) = ê for a given ê, we define the function f (x)
as

f (x) = Ê(x)− ê =
N

∑
k=0

ck

k+1
(xk+1 −1)+

3+δ−
2

− ê, (57)

and obtain the solution x of f (x) = 0 by the Newton method. That is, we construct
the sequence {xn} by

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

Ê(xn)− ê
Ĉv(xn)

(n = 0,1,2, . . .), (58)

with an appropriate x0 and obtain its limit as n → ∞. Once T̂ is obtained, δ is
determined as δ = D̂(T̂ ). This procedure is carried out at each step of iteration.

3.6 Numerical results

3.6.1 Parameter setting

We consider CO2 gas and set the parameters basically following [52,53]. We set
the upstream temperature T− and pressure p− to be T− = 295 K and p− = 69
mmHg, respectively, and use the formula Cv(T )/R = 1.412+ 8.697× 10−3T −
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6.575×10−6T 2+1.987×10−9T 3 for Cv(T ) derived in [53] from the experimental
data, where the coefficients have suitable dimensions in such a way that each term
on the right-hand side is dimensionless. Then we have Cv(T−)/R= 3.456 and γ−=
1.289. If we put T∗ = T− and E∗ = T−Cv(T−) in (3) [cf. the last part of the para-
graph containing (3)], we have δ− = 2Cv(T−)/R−3= 3.913. In [52], it is assumed
that µ ∝ T 0.935, so that we set Ac(T ) ∝ T 0.065 [or Âc(T̂ ) = T̂ 0.065] from (27a). It
should be noted, however, that although µb ∝ T 0.935 and λ ∝ T 0.935Cv(T )/R are
also assumed in [52], our model cannot be made to adjust to these forms because
of (27b) and (27c). In other words, if the parameters ν and θ have been fixed,
the choice of Cv(T ) and Ac(T ) completely determines µ , µb, and λ according to
(27) in the present model. We determine the values of ν and θ from the values of
Pr and µb/µ at T = T− using (28) and (29). More specifically, we set Pr = 0.73
and consider some different values of µb/µ at T = T−, i.e., (µb/µ)T=T− = 100,
200, 500, 1000, 2000, 5200, and ∞. The reason why we vary (µb/µ)T=T− is that
though µb/µ is known to be very large, the value is not known precisely and
that we are interested in the behavior of a polyatomic gas when µb/µ becomes
large. Therefore, as in [28] and [27], we consider a pseudo-CO2 gas with variable
(µb/µ)T=T− .

In [27], we showed the profiles of macroscopic quantities across a shock wave
of Types A, B, and C, where these types are defined in [52]. That is, Type A
indicates a smooth and symmetric profile that is realized when M− is close to 1;
Type C is a profile with a double-layer structure composed of a thin front layer
with rapid change and a thick rear layer with slow relaxation of the internal modes
that appears when M− is slightly larger; and Type B indicates a non-symmetric
profile with a corner upstream that occurs at the transition from Type A to Type C.
The ES model with constant specific heats, which was used in [27], is legitimated
for Type-A and B profiles because the temperature rise across the shock wave is
small in these cases. Therefore, in the present study, we concentrate on the Type-C
profile. Since the transition from Type A to Type C takes place at M− = 1.137 in
the present parameter setting, we carry out the computation for M− = 1.3, 1.47,
3, and 5 following [52,53]. However, to save space, we will present the results
only for M− = 1.3 and 5. The downstream states for M− = 1.3 and 5 are shown
in Table 1, and the corresponding values for θ = 0 (or µb/µ = ∞), including the
values of M̃− that is defined in Appendix B.2 [cf. (114b) with Ttr− = T−], are
shown in Table 2. The values of ν and θ corresponding to our choices of Pr and
(µb/µ)T=T− are shown in Table 3.

3.6.2 Profiles of macroscopic quantities

As in [27], we show the profiles of the density ρ , the flow velocity v1 (the X1
component), and the temperatures T , Ttr, and Tint normalized in the conventional
way, i.e.,

ρ̌ =
ρ −ρ−

ρ+−ρ−
, v̌ =

v1 − v+
v−− v+

, Ť =
T −T−
T+−T−

, Ťtr =
Ttr −T−
T+−T−

, Ťint =
Tint −T−
T+−T−

.

(59)

In this normalization, ρ̌ , Ť , Ťtr, and Ťint varies from 0 (upstream infinity) to 1
(downstream infinity), whereas v̌ from 1 (upstream infinity) to 0 (downstream in-
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Ť

(b)
x1

ρ̌
,
v̌
,
Ť
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Fig. 1 Profiles of ρ̌ , v̌, and Ť at M− = 1.3 for (µb/µ)T=T− = 500, 1000, 2000, and ∞. (a) Profiles
for −1000 ≤ x1 ≤ 15000, (b) profiles for −30 ≤ x1 ≤ 200. The red solid line indicates ρ̌ , the
green dashed line v̌, and the blue dot-dashed line Ť . (Color figure online)
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Fig. 2 Profiles of Ťtr and Ťint at M− = 1.3 for (µb/µ)T=T− = 500, 1000, 2000, and ∞. (a) Profiles
for −1000 ≤ x1 ≤ 15000, (b) profiles for −30 ≤ x1 ≤ 200. The red solid line indicates Ťtr and
the blue dot-dashed line Ťint. (Color figure online)
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Fig. 3 Profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 at M− = 1.3 for (µb/µ)T=T− = 500, 1000, 2000,
and ∞. (a) Profiles for −1000 ≤ x1 ≤ 15000, (b) profiles for −30 ≤ x1 ≤ 200. The red solid line
indicates p̂11 − p̂, the green dashed line p̂22 − p̂, and the blue dot-dashed line −q̂1. (Color figure
online)

finity). In addition, we only show the results for large values of (µb/µ)T=T− , i.e.,
(µb/µ)T=T− = 500, 1000, 2000, and ∞.

In Fig. 1, we show the profiles of ρ̌ , v̌, and Ť at M− = 1.3 for (µb/µ)T=T− =
500, 1000, 2000, and ∞. Figure 1(b) is the magnified figure of Fig. 1(a) in the range
−30 ≤ x1 (= X1/l−) ≤ 200. The red solid line indicates ρ̌ , the green dashed line v̌,
and the blue dot-dashed line Ť (color figure online). Note that for (µb/µ)T=T− =
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Fig. 4 Profiles of ρ̌ , v̌, and Ť at M− = 5 for (µb/µ)T=T− = 500, 1000, 2000, and ∞. (a) Profiles
for −200 ≤ x1 ≤ 2600, (b) profiles for −20 ≤ x1 ≤ 120. See the caption of Fig. 1. (Color figure
online)
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Ť
in
t

2000

1000

(µb/µ)T=T
−

=500∞

Fig. 5 Profiles of Ťtr and Ťint at M− = 5 for (µb/µ)T=T− = 500, 1000, 2000, and ∞. (a) Profiles
for −200 ≤ x1 ≤ 2600, (b) profiles for −20 ≤ x1 ≤ 120. See the caption of Fig. 2. (Color figure
online)
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Fig. 6 Profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 at M− = 5 for (µb/µ)T=T− = 500, 1000, 2000, and
∞. (a) Profiles for −200 ≤ x1 ≤ 2600, (b) profiles for −20 ≤ x1 ≤ 120. See the caption of Fig. 3.
(Color figure online)

∞, the downstream condition is different from that for finite (µb/µ)T=T− and is
given by the Rankine–Hugoniot relations for (µb/µ)T=T− = ∞ or θ = 0 [(114),
(116), and (117) (note that Ttr− = Tint− = T− in the present problem)]. In this figure
and the following Figs. 2–6, x1 = 0 is set at the position where the density is equal
to the average of the upstream and downstream values when (µb/µ)T=T− =∞. The
profiles, which are of Type C, consist of a thin front layer and a thick rear layer.
As (µb/µ)T=T− increases, the thickness of the rear layer increases and reaches
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Fig. 7 Comparison of the profiles of ρ̂ , v̂1, and T̂ at M− = 5 for (µb/µ)T=T− = 2000. The solid
line indicates the case of temperature-dependent specific heats (or temperature-dependent δ ) and
the dashed line the case of constant specific heats [or constant δ (= δ−)]. The red color shows
ρ̂ , the green color v̂1, and the blue color T̂ . (Color figure online)

over 15000 mean free paths (l−) for (µb/µ)T=T− = 2000, whereas the profiles of
the thin front layer are not affected by (µb/µ)T=T− and coincide with the shock
profiles for (µb/µ)T=T− = ∞.

Figure 2 shows the profiles of Ťtr and Ťint in the same case as Fig. 1. Figure
2(b) is the magnified figure of Fig. 2(a) in the range −30 ≤ x1 ≤ 200. The red
solid line indicates Ťtr and the blue dot-dashed line Ťint (color figure online). A
significant overshoot is observed for Ťtr. In Fig. 3, the profiles of p̂11 − p̂, p̂22 − p̂,
and −q̂1 are shown in the same case as Fig. 1. Figure 3(b) is the magnified figure of
Fig. 3(a) in the range −30 ≤ x1 ≤ 200, and the red solid line indicates p̂11− p̂, the
green dashed line p̂22 − p̂, and the blue dot-dashed line −q̂1 (color figure online).
The q̂1 is nonzero only in the thin front layer and is not affected by (µb/µ)T=T− ;
p̂11 = p̂22 holds almost whole range of the thick rear layer.

Since the temperature variation is rather small for M− = 1.3 (cf. Table 1),
the profiles shown in Figs. 1–3 are little affected by the temperature-dependent
specific heats and almost coincide with the profiles for constant δ (= δ−). The
small difference is due to the fact that the downstream state is slightly different
because of the different Rankine–Hugoniot relations (cf. Table 1).

Next, we show the profiles at a higher Mach number, M−= 5, for (µb/µ)T=T− =

500, 1000, 2000, and ∞. Figure 4 shows the profiles of ρ̌ , v̌, and Ť , Fig. 5 those
of Ťtr and Ťint, and Fig. 6 those of p̂11 − p̂, p̂22 − p̂, and −q̂1. Figures 4(b), 5(b),
and 6(b) are, respectively, the magnified figures of Figs. 4(a), 5(a), and 6(a) in the
range −20 ≤ x1 (= X1/l−) ≤ 120, and the types of lines are the same as Figs. 1–3,
i.e., the red solid line indicates ρ̌ , the green dashed line v̌, and the blue dot-dashed
line Ť in Fig. 4; the red solid line indicates Ťtr and the blue dot-dashed line Ťint in
Fig. 5; and the red solid line indicates p̂11 − p̂, the green dashed line p̂22 − p̂, and
the blue dot-dashed line −q̂1 in Fig. 6 (color figure online).

In this case (M− = 5), the shock wave is thinner than that at M− = 1.3 for
the same (µb/µ)T=T− and extend over 2600 mean free paths when (µb/µ)T=T− =
2000. The change of the profiles over the thin front layer at M− = 5 is steeper
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than that at M− = 1.3. As one can see from Table 1, the values of the macro-
scopic quantities at downstream infinity are very different from those for a gas
with constant specific heats, so that the profiles over the thick layer are signifi-
cantly affected by the temperature-dependent specific heats. The profiles of ρ̂ , v̂1,
and T̂ are compared between the case of temperature-dependent specific heats (or
temperature-dependent δ ) and the case of constant specific heats [or constant δ
(= δ−)] in Fig. 7 for M− = 5 and (µb/µ)T=T− = 2000.

As was mentioned at the beginning of Sect. 3.5, the numerical method used
here is essentially the same as that in [27], where the scheme and solution proce-
dure are explained in detail (see Sects. IV B and IV C in [27]). In addition, the
detailed information on the actual grid systems in x1 and ζ1 used in [27] is given
in Appendices B 1 and B 2 in [27], and the accuracy of computation is checked
in Appendix B 3 in [27]. The grid systems used for M− = 1.3 in the present study
is not far from those used for M− = 1.2 in [27], and those used for M− = 5 here
is close to those for M− = 5 in [27]. The accuracy of computation in the present
study is almost the same as that attained for M− = 1.2 and 5 in [27] (see Appendix
B 3). To avoid cumbersomeness, we omit information about the data for numerical
computation in the present paper.

3.6.3 Comparison with [52,53]

Now we try to compare the profiles based on the present ES model with those
based on the extended thermodynamics (ET) [52,53]. The parameter setting in
Sect. 3.6.1 is the same as [52] except that µb and λ are slightly different. In [27],
it is shown that the profiles of the density, flow velocity, and temperature for M− =
1.47 and µb/µ = 5200 obtained by using the ES model with constant specific heats
agree well with those obtained in [52] (see Fig. 15 in [27] and the parameter setting
there). The very small discrepancy is due to the fact that, since the specific heats
of the model used in [52] are temperature dependent, the downstream equilibrium
is slightly different from that of the ES model. This discrepancy is removed by the
present ES model with temperature-dependent specific heats, and the two results
agree perfectly. The figure of comparison for M− = 1.47 and µb/µ = 5200 is
omitted here for conciseness.

Unlike [52], the following formula of the bulk viscosity µb is used in [53]:

µb =

(
2
3
− R

Cv

)
pτ, τ = τ−

5−3γ−
5−3γ(T )

ρ−
ρ

(
T−
T

)2.3

, (60)

where the notation in the present paper is used. In (60), τ = τ(ρ, T ) is the relax-
ation time for the dynamic pressure, and τ− = τ(ρ−, T−) (cf. [53]). By comparing
the first equation of (60) with (27b), we obtain τ = 1/[θρAc(T )], which leads to

Ac(T )
Ac(T−)

=
5−3γ(T )
5−3γ−

(
T
T−

)2.3

, or Âc(T̂ ) =
5−3γ(T̂ )
5−3γ−

T̂ 2.3. (61)

Equation (27) with this expression gives the relations µ ∝ [5/3− γ(T )]T−1.3 and
µb ∝ T−1.3, which are very different from µ ∝ T 0.935 in [52]. In the comparison
of the present result with the result in [53], we reset Ac(T ) as (61).
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Fig. 8 Comparison between the profiles based on the present ES model and those based on the
extended thermodynamics in [53]. The figure is a reproduction of Fig. 4 in [53] (courtesy of
M. Sugiyama and S. Taniguchi). The profiles of ρ̂ , v̂ (the same as our v̂1), T̂ , and Π̂ (= Π/p−)
at M̂− = 5 are shown. The red thick solid line indicates the result based on the nonlinear ET6
system, and the thin black solid line that based on the linear ET6 system (see [53] for the ET6
systems); the present result based on the new ES model for (µb/µ)T=T− = 2000 is overdrawn
by the cross symbol. (Color figure online)

We further note that the space coordinate x̂ and the dynamic pressure Π in [53]
are related to our notation as

x̂ = (8/πγ−)1/2θx1, Π = (1/3)(p11 +2p22)− p. (62)

Figure 8 shows the comparison between the present numerical solution based
on the new ES model and the result based on the extended thermodynamics [53]
at M̂− = 5. To be more specific, Fig. 8 is a reproduction of Fig. 4 in [53] with the
present numerical result being overdrawn. The notations ρ̂ , v̂, and T̂ in the figure
are the same as ρ̂ , v̂1, and T̂ in the present paper, and Π̂ is Π in (62) devided by p−.
In the figure, the red thick solid line indicates the result based on the nonlinear ET6
system, the thin black solid line indicates the result based on the linear ET6 system
(see [53] for the ET6 systems), and the cross symbol indicates the result based on
the new ES model at (µb/µ)T=T− = 2000 (color figure online). The latter result is
shown only at discrete points to make the comparison more visible. It should be
noted that with the coordinate x̂, which is proportional to our y1 appearing later
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[cf. (63)], the profiles in the thick rear layer are independent of µb/µ when it is
large [27]. As seen from the figure, the result based on the ES model shows very
good agreement with that based on the linear ET6 system. The numerical result
was also compared with the results based on the nonlinear and linear ET6 systems
for M− = 1.3 and 3 shown in Figs. 2 and 3 in [53], where the nonlinear and linear
ET6 systems give almost the same result, and very good agreement was obtained.
The figure of comparison is omitted here.

In [52], the ET14 system, which is a system for 14 macroscopic variables
derived on the basis of extended thermodynamics, is used, and the profiles of the
macroscopic quantities are obtained in the thin front layer as well as in the thick
rear layer of Type-C solution. In contrast, [53] uses the simpler ET6 system, which
contains only 6 macroscopic variables, and considers its weak solution. In other
words, the thin front layer is replaced by a jump (sub-shock) with a suitable jump
condition [51]. In Fig. 8, this jump is indicated by the vertical dashed line, which
is more visible in Fig. 4 in [53]. The result based on the new ES model describes
the structure of the thin front layer, too. However, it degenerates into the vertical
line in the scale of Fig. 8.

3.7 Slowly varying solution

In [27], a set of macroscopic equations that describes slow relaxation of the inter-
nal modes over the thick rear layer in Type-C solution (and the entire profiles of
Type-A and B solutions) when the ratio µb/µ is large (i.e., θ is small) has been
obtained by considering a slowly varying solution whose length scale of variation
in x1 is 1/θ . This system is convenient because one can obtain an analytical solu-
tion of the shock profiles. In the present section, we try to obtain the corresponding
macroscopic system and its solution. Since the analysis is in parallel to Sect. V A
in [27], we will make a concise description quoting [27] occasionally.

As in [27], we consider the case where θ ≪ 1 and introduce the space coordi-
nates yi:

yi = (2/
√

π)θxi, (63)

whose length scale of variation is of O(1/θ) to describe the slowly varying solu-
tion. Then, the dimensionless model equation (118) in Appendix C, which is the
spatially three-dimensional version of (36), becomes (119). In Appendix C, the
slowly varying solution f̂ (yi, ζi, Ê ) is obtained in the form of expansions (120)
and (121), and the macroscopic equations for the leading-order terms ρ̂(0), v̂(0)j ,

T̂ (0)
tr , and T̂ (0)

int in expansion (121) are derived as (137) [or (138)] and one of (140)
and (142).

Now we consider the spatially one-dimensional case and assume that ∂/∂y2 =

∂/∂y3 = 0 and v̂(0)2 = v̂(0)3 = 0. If we choose (137) and (142) as the governing
equations and omit the superscript (0) for brevity, these equations reduce to the
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following system:

d
dy1

(ρ̂ v̂1) = 0, (64a)

d
dy1

(
T̂tr

v̂1
+2v̂1

)
= 0, (64b)

d
dy1

(
v̂2

1 +
5
2

T̂tr +
δ
2

T̂int

)
= 0, (64c)

v̂1
d

dy1
(δ T̂int) =

3δ
3+δ

Âc(T̂ )ρ̂
(
T̂tr − T̂int

)
, (64d)

where

δ = D̂(T̂ ) =
2
T̂

Ê(T̂ )−3, T̂ = Ê−1(3T̂tr/2+δ T̂int/2), (65)

[cf. (133)]; therefore the relation

T̂ =
3T̂tr +δ T̂int

3+δ
, (66)

holds [cf. (143)]. Here, we have used (64a) in deriving (64b) and (64c) and used
(66) in deriving (64d). Hereafter, we consider (64) supplemented by the first equa-
tion of (65) and (66) as the closed system to be solved. It should be noted that (64)
is the steady version of a hyperbolic conservation system with relaxation, a sim-
plified model of which has been studied in mathematical rigor [33].

As in Sect. V A in [27], it follows from (64a)–(64c) that [cf. (57) in [27]]

ρ̂ =
c1

v̂1
, T̂tr = v̂1 (c2 −2v̂1) , T̂int =

2
δ

(
c3 −

5
2

c2v̂1 +4v̂2
1

)
, (67)

where c1, c2, and c3 are constants. Inserting (67) in (64d) and (66), we obtain the
following equations [cf. (58) in [27]]:

v̂2
1

(
5
16

c2 − v̂1

)
dv̂1

dy1
=

3
8(3+δ )

c1Âc(T̂ )
[
(4+δ )v̂2

1 −
5+δ

2
c2v̂1 + c3

]
, (68a)

δ = D̂(T̂ ), T̂ =
2

3+δ
(
v̂2

1 − c2v̂1 + c3
)
. (68b)

Since δ and T̂ can be, in principle, expressed in terms of v̂1 from (68b), (68a) is the
equation for v̂1. If we eliminate c3 from (68a) using (68b), we have an alternative
expression of (68a), i.e.,

v̂2
1

(
5
16

c2 − v̂1

)
dv̂1

dy1
=

3
8

c1Âc(T̂ )
(

v̂2
1 −

1
2

c2v̂1 +
1
2

T̂
)
. (69)

As discussed in [27], the slowly varying solution describes either the full shock
profiles (Type-A and Type-B profiles) or the profiles of the thick rear layer (Type-
C profile). Therefore, (ρ̂, v̂1, T̂tr, T̂int) should approach (ρ̂+, v̂+, T̂+, T̂+) as x1 →
∞. If we consider this limit in (67), we have

c1 = ρ̂+v̂+, c2 = (T̂+/v̂+)+2v̂+, c3 = v̂2
++[(5+δ+)/2]T̂+. (70)
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However, the dimensionless version of (89) and the fact that Ê(1) = (3+ δ−)/2
and Ê(T̂+) = [(3+δ+)/2]T̂+ show that the right-hand sides of three equations of
(70) are equal to v̂−, (1/v̂−)+2v̂−, and v̂2

−+(5+δ−)/2, respectively. Therefore,
c1, c2, and c3 are expressed, in terms of the upstream quantities, as

c1 = v̂−, c2 =
1

v̂−
+2v̂−, c3 = v̂2

−+
5+δ−

2
. (71)

By using (71), we can transform (69) and (68b) into the following form:

v̂2
1(v̂∗− v̂1)

dv̂1

dy1
=

3v̂−
8

Âc(T̂ )
(

v̂2
1 −

1+2v̂2
−

2v̂−
v̂1 +

1
2

T̂
)
, (72a)

δ = D̂(T̂ ), (72b)

T̂ =
2

3+δ

[
3+δ−

2
+(v̂1 − v̂−)

(
v̂1 −

1+ v̂2
−

v̂−

)]
, (72c)

where

v̂∗ =
5

16
1+2v̂2

−
v̂−

, (73)

and we should recall that δ− = D̂(1). When v̂1 = v̂−, (72c) shows that Ê(T̂ ) =
[(3+ δ )/2]T̂ = (3+ δ−)/2 = Ê(1), so that T̂ = 1 and thus δ = δ−. In this case,
it is readily seen that the right-hand side of (72a) vanishes. Therefore, v̂1 = v̂− is
an equilibrium point of (72a) if v̂∗ ̸= v̂−. On the other hand, if we use (70) in (68),
we obtain (72a) and (72c) with alternative expressions of the right-hand sides in
terms of the downstream quantities δ+ [= D̂(T̂+)], v̂+, and T̂+ [and ρ̂+ for (72a)].
From these expressions, we can readily see that when v̂1 = v̂+, it follows that
T̂ = T̂+ and thus δ = δ+. Therefore, it is easy to see that the right-hand side of
(72a) vanishes at v̂1 = v̂+, that is, it is an equilibrium point of (72a) if v̂∗ ̸= v̂+.
The (local) stability of the equilibrium points is discussed in Appendix D.

Once v̂1 is obtained from (72), other quantities follow from (67) with (71), i.e.,

ρ̂(v̂1) =
v̂−
v̂1

, T̂tr(v̂1) = 1+2(v̂−− v̂1)

(
v̂1 −

1
2v̂−

)
, (74a)

T̂int(v̂1) =
δ−
δ

+
8
δ
(v̂1 − v̂−)(v̂1 − v̂∗∗) , (74b)

where

v̂∗∗ =
5+2v̂2

−
8v̂−

, (75)

which is the dimensionless downstream velocity of the shock wave when θ = 0
corresponding to v+ in (114a). When v̂1 = v̂−, we have ρ̂ = T̂tr = T̂int = 1 because
δ = δ−. Similarly, from the alternative expressions of ρ̂ , T̂tr, and T̂int obtained by
using (70) in (67), it is seen that when v̂1 = v̂+, we have ρ̂ = ρ̂+ and T̂tr = T̂int = T̂+.

Since (72) is more implicit than the corresponding equation, (60) in [27], in
the case of constant δ , we can obtain less information about the global behavior
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of the solution. However, according to the stability analysis in Appendix D, we
can expect the basic properties of (60) in [27] are retained in (72). Therefore, we
try to integrate it in the similar way as in [27]. From (72a), we obtain

dy1

dv̂1
=

8
3v̂−

v̂2
1(v̂∗− v̂1)

Âc(T̂ )
(

v̂2
1 −

1+2v̂2
−

2v̂−
v̂1 +

1
2

T̂
) . (76)

Assuming that v̂1 is a decreasing function of y1, we integrate (76) from v̂1 to v̂0 to
obtain

y1(v̂1)− y0 =− 8
3v̂−

∫ v̂0

v̂1

u2(v̂∗−u)

Âc(T̂ )
(

u2 −
1+2v̂2

−
2v̂−

u+
1
2

T̂
)du, (77)

where

δ = D̂(T̂ ), (78a)

T̂ =
2

3+δ

[
3+δ−

2
+(u− v̂−)

(
u−

1+ v̂2
−

v̂−

)]
, (78b)

and y0 = y1(v̂0). The inverse function of y1(v̂1) gives the velocity profile v̂1(y1)
with the initial condition v̂1 = v̂0 at y1 = y0.

As in [27], we can make the following settings of y0 and v̂0 depending on the
upstream Mach number M− as well as the effective upstream Mach number M̃−
for θ = 0 that is defined by (114b) in Appendix B.2 (note that Ttr− = T− in the
present problem; see also Appendix D):

(i) For M̃− < 1 < M−, we let y0 =−∞ and v̂0 = v̂−. Then, the resulting profiles of
v̂1(y1) and other macroscopic quantities exhibit the entire profiles of Type A.

(ii) For 1 < M̃−(< M−), we let y0 = 0 and v̂0 = v̂∗∗ defined by (75). Then, the
resulting profiles of v̂1(y1) and other macroscopic quantities demonstrate the pro-
files in the thick rear layer of Type-C solution.

(iii) For M̃− = 1(< M−), we let y0 = 0 and v̂0 = v̂−. Then, the profiles of v̂1(y1)
and other macroscopic quantities show the entire profiles of Type B with a corner
at the start of the profiles y1 = 0.

Now we compare the solution (77) in case (ii) (Type-C profile) with the nu-
merical results that were shown in Figs. 1, 2, 4, and 5. Figures 9(a) and 9(b) are,
respectively, the same as Figs. 1(a) and 2(a) for M− = 1.3, but y1 is used instead of
x1. Therefore, the curves for (µb/µ)T=T− = 500, 1000, and 2000 coincide except
in the thin front layer. The result obtained from (77) is shown by the cross symbol
at discrete points of y1 to make the comparison clear. Figures 10(a) and 10(b) are,
respectively, the same as Figs. 4(a) and 5(a) for M− = 5, and the manner of com-
parison is the same as in Fig. 9. The figures show perfect agreement between the
solution based on (77) and numerical solution using the new ES model.

As remarked at the end of Appendix C.2, the macroscopic equations used here
are essentially the same as the ET6 system that has been used to analyze the shock-
wave structure in [51,53,40]. In these references, to describe the Type-C profile,
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Fig. 9 Comparison between the profiles based on the slowly varying solution and those based
on the numerical solution at M− = 1.3. (a) Profiles of ρ̌ , v̌, and Ť , (b) profiles of Ťtr and Ťint.
The cross symbol indicates the slowly varying solution, and the curves indicate the numerical
solution for (µb/µ)T=T− = 500, 1000, and 2000. See Figs. 1(a) and 2(a) and the captions of
Figs. 1 and 2
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Fig. 10 Comparison between the profiles based on the slowly varying solution and those based
on the numerical solution at M− = 5. (a) Profiles of ρ̌ , v̌, and Ť , (b) profiles of Ťtr and Ťint. See
the caption of Fig. 9

the weak solution of the ET6 system has been considered, that is, a sub-shock with
an appropriate jump condition is set and is connected with the solution of ET6
system. In the present section, as well as Sect. V in [27], we identified the thin
front layer of the Type-C profile as the shock wave for θ = 0 (or infinitely large
µb/µ) numerically and combined (64) with the corresponding Rankine–Hugoniot
relations to describe the Type-C profile. Since (64) is derived under the slowly
varying assumption, the weak solution, which allows discontinuities, should be
excluded. However, if we admit (64) as the basic equation, we can proceed in the
same way as in the case of the ET6 system. It should also be mentioned that shock-
wave structure for CO2 gas was studied recently by using different continuum
models, including the Navier–Stokes equations [1].

4 Concluding remarks

In the present study, we have proposed a new kinetic model for the Boltzmann
equation for a polyatomic gas with temperature-dependent specific heats (ther-
mally perfect gas or non-polytropic gas) (Sect. 2.1). It is a straightforward exten-
sion of the conventional ES model for a gas with constant specific heats (calori-
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cally perfect gas or polytropic gas) [2,14]. The basic properties of the new model,
such as the equilibrium solution, the conservation laws, and the H theorem (only
in the space-homogeneous case), have been established (Sect. 2.2). The formulas
of the viscosity, bulk viscosity, and thermal conductivity were also derived via the
Chapman–Enskog expansion (Sect. 2.3).

Then, the model was applied to the problem of the shock-wave structure of
CO2 gas, which is known to have a very large value of the ratio of the bulk viscos-
ity to the viscosity (Sect. 3). First, the problem was tackled by a direct numerical
analysis taking the advantage of the fact that the model can be reduced to a sys-
tem of three integro-differential equations with only two independent variables
(Sects. 3.4 and 3.5). The numerical analysis was carried out in parallel to the case
of a gas with constant specific heats [27]. The detailed profiles of macroscopic
quantities across the shock wave have been shown for two typical upstream Mach
numbers (M− = 1.3 and 5) that provides the Type-C profile defined in [52] (i.e.,
the profile consisting of a thin front layer with rapid change and a thick rear layer
with slow relaxation) (Sect. 3.6). In the case of the higher Mach number (M− = 5),
the effect of the temperature dependence of the specific heats has a large effect,
and the profiles are significantly different from those for the gas with constant
specific heats. The results were also compared with those based on the extended
thermodynamics [53], and very good agreement was shown.

Following the analysis in [27], we also considered the case where the ratio of
the bulk viscosity to the viscosity is large and derived a system of macroscopic
equations for the slowly varying solution, which describes the slow relaxation of
the internal modes, using a Hilbert-type expansion (Sect. 3.7). The system, which
is an extension of the system derived in [27] to the case of temperature-dependent
specific heats, is the steady version of a hyperbolic system with relaxation and
is basically the same as the system called ET6 in [53]. The numerical computa-
tion based on the analytical solution of this system, combined with the Rankine–
Hugoniot relations for infinitely large bulk viscosity, gives the profiles of the thick
rear layer of Type-C profile in perfect agreement with the numerical solution of
the new ES model shown in Sect. 3.6.

In the present paper, the shock structure was compared only with that based
on the extended thermodynamics. The comparison with the results using other
models and other numerical approaches, such as DSMC, would be of interest and
importance. In addition, we showed only one example of application of the new ES
model for a gas with temperature-dependent specific heats. Different applications,
such as spatially multi-dimensional flow problems containing shock waves, would
be an interesting future problem.
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thors (K.A.) thanks Department of Mathematics, National Cheng Kung University and National
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A Basic properties for θ = 0

In this appendix, we summarize the basic properties corresponding to Propositions 1 and 2 when
θ = 0 and give some comments on Propositions 3 and 4 in this case.
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Proposition 1′ (conservation for θ = 0): For an arbitrary function f (t, XXX , ξξξ , E ), the following
relation holds: ∫ ∫ ∞

0
φrQ( f )dE dξξξ = 0, (79)

where φr (r = 0, ..., 5) are the collision invariants, i.e.,

φ0 = 1, φi = ξi (i = 1, 2, 3), φ4 =
1
2
|ξξξ |2, φ5 = E . (80)

Proposition 2′ (equilibrium for θ = 0): The vanishing of the collision term Q( f ) = 0 is equiv-
alent to the fact that f is the following local equilibrium distribution:

feq =
ρ̄E δ̄/2−1

(2πRT̄tr)3/2(RT̄int)δ̄/2Γ (δ̄/2)
exp
(
−|ξξξ − v̄vv|2

2RT̄tr
− E

RT̄int

)
, (81)

where ρ̄ , v̄vv, T̄tr, and T̄int are arbitrary functions of t and XXX , and δ̄ and T̄ are determined by the
following coupled equations:

δ̄ = D(T̄ ), T̄ = E−1(3RT̄tr/2+ δ̄RT̄int/2). (82)

The solution (δ̄ , T̄ ) of (82) exists. In particular, it is unique when T̄int ≤ T̄tr.

Proof of Proposition 1′: As is seen from (20a) and (21a), (79) holds for φ0 = 1 and φr = ξr
(r = 1, 2, 3) also for θ = 0. Because Trel = Tint when θ = 0, (21a) and (21b) reduce to∫ ∫ ∞

0
ξ 2

k G dE dξξξ = 3RρTtr +ρv2
k = 2ρetr +ρv2

k ,
∫ ∫ ∞

0
E G dE dξξξ = ρ

δRTint

2
= ρeint. (83)

Therefore, instead of (16) with φ4 = |ξξξ |2/2+E , the following relations hold independently:∫ ∫ ∞

0
ξ 2

k (G − f )dE dξξξ = 0,
∫ ∫ ∞

0
E (G − f )dE dξξξ = 0, (84)

that is, (79) holds with r = 4 and 5. □

Proof of Proposition 2′: First, we discuss the coupled equations (82). From (4) and (82), it
follows that

E(T̄ ) =
3
2

RT̄tr +
D(T̄ )

2
RT̄int =

3
2

R(T̄tr − T̄int)+
T̄int

T̄
E(T̄ ). (85)

If T̄tr = T̄int, then there is a unique solution T̄ = T̄tr = T̄int. Therefore, we assume T̄tr ̸= T̄int in the
following. Then, we have

E(T̄ ) =
3
2

R(T̄tr − T̄int)
T̄

T̄ − T̄int
. (86)

If we denote the right-hand side of this equation by f (T̄ ), then

f ′(T̄ ) =
3
2

R
T̄int(T̄int − T̄tr)

(T̄ − T̄int)2 . (87)

(i) When T̄tr > T̄int, f (T̄ ) is monotonically decreasing and has the following properties:

f (T̄ )< 0 (0 < T̄ < T̄int), f (T̄int −0) =−∞, f (T̄int +0) = +∞,

f (T̄tr) =
3
2

RT̄tr, f (+∞) =
3
2

R(T̄tr − T̄int).

From this and the fact that E(T̄ ) is monotonically increasing and E(T̄tr) > 3RT̄tr/2, we
conclude that T̄ ∈ (T̄int, T̄tr) satisfying (86) is determined uniquely.
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(ii) When T̄tr < T̄int, f (T̄ ) is monotonically increasing and has the following properties:

f (T̄ )> 0 (0 < T̄ < T̄int), f (T̄tr) =
3
2

RT̄tr, f (T̄int −0) = +∞,

f (T̄int +0) =−∞, f (+∞) =−3
2

R(T̄int − T̄tr).

Since E(T̄tr)> 3RT̄tr/2 and E(T̄int) is finite, there exist at least one T̄ ∈ (T̄tr, T̄int) satisfying
(86). However, there is a possibility of multiple solutions depending on the functional form
of E(T̄ ). If there are two sets of solutions (T̄1, δ̄1) and (T̄2, δ̄2), i.e.,

δ̄1 = D(T̄1) , T̄1 = E−1 (3RT̄tr/2+ δ̄1RT̄int/2
)
,

δ̄2 = D(T̄2) , T̄2 = E−1 (3RT̄tr/2+δ2RT̄int/2) ,

then T̄1 ̸= T̄2 is equivalent to δ̄1 ̸= δ̄2 because the correspondence between T and e by
T =E−1(e) is unique. In other words, if there are two sets of solutions, there is no possibility
that only one of T̄ and δ̄ is different.

Now we go back to the original problem. We choose a set (T̄ , δ̄ ) satisfying (82) and con-
struct feq according to (81). We first show that if f = feq, then Q( f ) = 0, i.e., G = feq = f .
Equations (8d) and (9) with this f give pi j = Rρ̄T̄trδi j , etr = 3RT̄tr/2, eint = δ̄RT̄int/2, and
e = 3RT̄tr/2+ δ̄RT̄int/2. This e and (8e) uniquely determine δ , which is the same as δ̄ (δ = δ̄ )
used in the construction of feq. This is due to the following fact. Since the right-hand side of the
first equation of (8e) is the same as that of the second equation of (82), the T obtained from the
first equation of (8e) is the same as T̄ . Therefore, from the argument in (ii) above, it is concluded
that the δ determined from the second equation of (8e) cannot be different from δ̄ . Then, noting
that θ = 0, we obtain Ti j = RT̄trδi j , which gives det(T) = (RT̄tr)

3, from (8b) and Trel = T̄int from
(8f). Consequently, it is shown that G = feq (= f ).

Next, we show that if Q( f ) = 0, f must be of the form of (81). Suppose that f = G for an
arbitrarily given f , where G is constructed from f with the help of (8) and (9). Then, from (8d)
and (9) with f = G and from (21a) and (21b), we obtain pi j = ρ(T)i j , etr = (T)kk/2, and eint =
δRTint/2. Since ν ̸= 1, (8b) gives (T)i j = RTtrδi j . In this case, since e = etr + eint = 3RTtr/2+
δRTint/2, the (T, δ ) obtained by (8e) is the solution of (82). On the other hand, det(T) = (RTtr)

3

and (T−1)i j = δi j/RTtr hold. Therefore, G is reduced to a function of the form of (81). In other
words, f must be of the form of feq. □

We conclude this appendix noting that Propositions 3 and 4 hold also in the case of θ = 0.
The only difference is that the equality sign holds for feq given by (81).

B Rankine–Hugoniot relations

In this appendix, we first derive the Rankine–Hugoniot relations in the case of θ ̸= 0, which are
summarized as Proposition 5. Then, the derivation is also made in the case of θ = 0.

B.1 Rankine–Hugoniot relations for θ ̸= 0 (Proof of Proposition 5)

Multiplying (6) (with ∂ f/∂ t = ∂ f/∂X2 = ∂ f/∂X3 = 0) by (1, ξi, |ξξξ |2/2+E ), integrating the
resulting equations with respect to ξξξ over its whole space and E from 0 to ∞, and taking (16)
and (20) into account, we obtain

ρv1 = const, p1i +ρv1vi = const (i = 1, 2, 3), (88a)

q1 + p1kvk + v1

(
ρe+

1
2

ρ|vvv|2
)
= const. (88b)
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If we apply (88) between the upstream and downstream equilibrium states and note that vvv± =
(v±, 0, 0), (pi j)± = p±δi j = Rρ±T±δi j , and (qi)± = 0, we obtain the following relations:

ρ−v− = ρ+v+, (89a)

Rρ−T−+ρ−v2
− = Rρ+T++ρ+v2

+, (89b)

ρ−v−

(
RT−+E(T−)+

1
2

v2
−

)
= ρ+v+

(
RT++E(T+)+

1
2

v2
+

)
. (89c)

We first try to obtain T+. If we divide (89c) by (89a) and let dE(T ) = E(T )−E(T−), we
obtain

RT−+
1
2

v2
− = RT++dE(T+)+

1
2

v2
+. (90)

Multiplying this equation by 2ρ+, subtracting (89b), and interchanging the left- and right-hand
sides, we have

ρ+ [RT++2dE(T+)] = ρ+

(
2RT−+ v2

−
)
−ρ−

(
RT−+ v2

−
)
. (91)

By multiplying by v+ and using (89a), this relation is transformed into

RT++2dE(T+)−
(
2RT−+ v2

−
)
=−

(
RT−
v−

+ v−

)
v+. (92)

If we square both sides of (92) and eliminate v2
+ using (90), we obtain the following equation:

(RT+)2 +2RT+

[
2dE(T+)+

(
RT−
v−

)2
]

+
[
2dE(T+)−2RT−− v2

−
][

2dE(T+)+
(

RT−
v−

)2
]
= 0. (93)

We use the symbols M−, γ−, and τ defined in (30) and (31) and the following dimensionless
quantities:

d̂E(T̂ ) =
dE(T )
RT−

=
∫ T

T−

Cv(s)
RT−

ds =
∫ T̂

1
Ĉv(ŝ)dŝ, (94a)

T̂ =
T
T−

, Ĉv(T̂ ) =
Cv(T−T̂ )

R
. (94b)

The symbols T̂ and Ĉv appear in (35). Then, (93), divided by (RT−)2, leads to

τ2 +2τ
[

2d̂E(τ)+
1

γ−M2
−

]
+
[
2d̂E(τ)−2− γ−M2

−
][

2d̂E(τ)+
1

γ−M2
−

]
= 0. (95)

Since τ > 0, we can formally solve (95) to obtain

τ =−
(

2d̂E(τ)+
1

γ−M2
−

)
+

(
1

√γ−M−
+
√

γ−M−

)√
2d̂E(τ)+

1
γ−M2

−
. (96)

Because d̂E(1) = 0, τ = 1 is a solution.
In order to consider if there is a nontrivial solution τ > 1, we define the function f (x) by

f (x) =−
(

2d̂E(x)+
1

γ−M2
−

)
+

(
1

√γ−M−
+
√

γ−M−

)√
2d̂E(x)+

1
γ−M2

−
, (97)
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and examine if the curves y = f (x) and y = x intersect at x larger than x = 1 (obviously they
intersect at x = 1). From

f ′(x) =−2Ĉv(x)

1−
1+ γ−M2

−

2
√

2γ−M2
−d̂E(x)+1

 , (98)

we have, for M− > 1,

f ′(1) = Ĉv(1)
(
γ−M2

−−1
)
>

Cv(T−)
R

(
Cv(T−)+R

Cv(T−)
−1
)
= 1. (99)

On the other hand, since we assumed that Cv > 3R/2, we have d̂E(x)> (3/2)(x−1). Therefore,
if we take a sufficiently large constant K, we can make

1−
1+ γ−M2

−

2
√

2γ−M2
−d̂E(x)+1

>
1
2
, for x ≥ K, (100)

so that

f ′(x)<−Ĉv(x)<−3
2
, for x ≥ K. (101)

From this, it follows that

f (x)< f (K)− 3
2

∫ x

K
dx =−3

2
x+ f (K)+

3
2

K. (102)

To summarize, the curve y = f (x) intersects y = x at x = 1 and once goes above it for x > 1
because of (99). However, since y = f (x) decreases indefinitely as x for x > K, it intersects
y = x at least one more time. Therefore, a nontrivial solution τ > 1 of (95) exists. If Ĉv(x) is
a monotonically increasing function, f ′(x) is a strictly decreasing function because d̂E(x) is a
strictly increasing function. Therefore, the curve y = f (x) is convex upward and intersects y = x
only once for x > 1. In this case, the nontrivial solution τ > 1 is unique.

We assume that the nontrivial solution τ = T+/T− has been obtained and try to obtain v+.
If we divide (92) by RT− and make use of (30), we have

τ +2d̂E(τ)−
(
2+ γ−M2

−
)
=−

(
1+ γ−M2

−
) v+

v−
. (103)

With the help of (96), this is transformed as

v+
v−

=
2+ γ−M2

−− τ −2d̂E(τ)
1+ γ−M2

−
=

1+ γ−M2
−−

√
2γ−M2

−d̂E(τ)+1

γ−M2
−

. (104)

From (89a), we have
ρ+

ρ−
=

v−
v+

. (105)

Obviously, when τ = T+/T− = 1, it follows from (104) and (105) that ρ+/ρ− = v+/v− = 1. The
discussion given above completes the proof of Proposition 5.

If Cv is constant and of the form Cv = (3+δ )R/2 with a constant δ , then γ is constant, and
d̂E(τ) becomes

d̂E(τ) =
3+δ

2
(τ −1) =

1
γ −1

(τ −1). (106)

Using this in (95) and (104) and carrying out some algebra, we obtain the following relations:

T+
T−

=

[
2γM2

−− (γ −1)
][
(γ −1)M2

−+2
]

(γ +1)2M2
−

,
v+
v−

=
(γ −1)M2

−+2
(γ +1)M2

−
. (107)

Equations (105) and (107) are nothing but the Rankine–Hugoniot relations when Cv and Cp (thus
γ) are constant.
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B.2 Rankine–Hugoniot relations for θ = 0

If we Multiply (6) (with ∂ f/∂ t = ∂ f/∂X2 = ∂ f/∂X3 = 0) by (1, ξi, |ξξξ |2/2, E ), integrate the
resulting equations with respect to ξξξ over its whole space and E from 0 to ∞, and take (79) and
(20) into account, we obtain

ρv1 = const, p1i +ρv1vi = const (i = 1, 2, 3), (108a)

(qtr)1 + p1kvk + v1

(
ρetr +

1
2

ρ|vvv|2
)
= const, (108b)

(qint)1 +ρv1eint = const, (108c)

where

(qtr)i =
∫ ∫ ∞

0

1
2
(ξi − vi)|ξξξ − vvv|2 f dE dξξξ , (qint)i =

∫ ∫ ∞

0
(ξi − vi)E f dE dξξξ . (109)

On the other hand, the equilibrium distributions at upstream and downstream infinities are
given on the basis of (81). Therefore, one can specify four constants (ρ−, v−, Ttr−, Tint−) at
upstream infinity when θ = 0 instead of the three (ρ−, v−, T−). Accordingly, the downstream
constant (ρ+, v+, Ttr+, Tint+) should be determined by appropriate relations (Rankine–Hugoniot
relation). We will obtain this relation. The equilibrium distributions at upstream and downstream
infinities can be expressed as

f =
ρ−E δ−/2−1

(2πRTtr−)3/2(RTint−)δ−/2Γ (δ−/2)
exp
(
−
(ξ1 − v−)2 +ξ 2

2 +ξ 2
3

2RTtr−
− E

RTint−

)
,

(X1 →−∞), (110a)

f =
ρ+E δ+/2−1

(2πRTtr+)3/2(RTint+)δ+/2Γ (δ+/2)
exp
(
−
(ξ1 − v+)2 +ξ 2

2 +ξ 2
3

2RTtr+
− E

RTint+

)
,

(X1 → ∞), (110b)

where δ− and δ+ are, respectively, determined by the following equations:

δ− = D(T−), T− = E−1(3RTtr−/2+δ−RTint−/2), (111a)

δ+ = D(T+), T+ = E−1(3RTtr+/2+δ+RTint+/2). (111b)

The existence and uniqueness of the solution (T−, δ−) or (T+, δ+) are discussed in the proof of
Proposition 2′.

Applying (108) between the upstream and downstream equilibrium states and noting that
vvv± =(v±, 0, 0), (pi j)± =Rρ±Ttr±δi j , (qtr)i± =(qint)i± = 0, etr± = 3RTtr±/2, and eint± = δ±RTint±/2,
we obtain the following relations:

ρ−v− = ρ+v+, (112a)

Rρ−Ttr−+ρ−v2
− = Rρ+Ttr++ρ+v2

+, (112b)

ρ−v−

(
5
2

RTtr−+
1
2

v2
−

)
= ρ+v+

(
5
2

RTtr++
1
2

v2
+

)
, (112c)

ρ−v−
δ−
2

RTint− = ρ+v+
δ+
2

RTint+. (112d)

From (112a) and (112d), we readily obtain

δ−Tint− = δ+Tint+. (113)

Here, we should note that (112a)–(112c) give the relations exactly the same as the Rankine–
Hugoniot relations for a monatomic gas if we define the upstream Mach number based on Ttr−,
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that is,

ρ+

ρ−
=

4M̃2
−

M̃2
−+3

,
v+
v−

=
M̃2

−+3

4M̃2
−

,
Ttr+

Ttr−
=

(5M̃2
−−1)(M̃2

−+3)

16M̃2
−

, (114a)

M̃− =
v−√

5RTtr−/3
= M−

√
3γ−

5(Ttr−/T−)
. (114b)

If we define dE(T ) = E(T )−E(T−) as in Appendix B.1, we have

dE(T+) = E(T+)−E(T−) =
3
2

R(Ttr+−Ttr−) . (115)

Using symbols τ = T+/T− and d̂E [cf. (94a)] appeared in Appendix B.1, we obtain the relation

d̂E(τ) =
3
2

(
Ttr+

Ttr−
−1
)

Ttr−
T−

=
3
2
(5M̃2

−+3)(M̃2
−−1)

16M̃2
−

Ttr−
T−

, (116)

which determines τ , i.e., T+. In addition, the following relations hold, as explained below:

Tint+

Tint−
=

δ−
δ+

, δ+ =
1
τ
[
3+δ−+2d̂E(τ)

]
−3, (117)

and δ+ and Tint+ are determined by these relations. The first equation of (117) is the direct
consequence of (113). On the other hand, it follows from (111b), (4), and (115) that δ+ =
D(T+) = (2/RT+)E(T+)−3 = (2/RT+)[dE(T+)+E(T−)]−3. From (111a) and (11), we know
that E(T−) = 3RTtr−/2 + δ−RTint−/2 = (3 + δ−)RT−/2. Combining these two relations and
using the definition of d̂E , we obtain the second equation of (117).

The relations obtained above give the Rankine–Hugoniot relations for θ = 0, which is sum-
marized as follows:

Proposition 5′ (Rankine–Hugoniot relations for θ = 0): For given upstream parameters ρ−,
v−, Ttr−, and Tint−, the additional upstream parameters T− and δ− are determined by (111a).
Then, the downstream parameters ρ+, v+, and Ttr+ are determined by (114). In addition, the
additional downstream parameters T+, Tint+, and δ+ are determined by (116) and (117).

C Derivation of the macroscopic equations

In this appendix, we consider the case of large ratio µb/µ (or small θ ) and obtain the slowly
varying solution of (36) whose length scale of variation is of the order of 1/θ . Although the
concept of the slowly varying solution appeared in connection with the problem of shock-wave
structure, which is spatially one dimensional, we consider the more general spatially three-
dimensional case where f = f (Xi, ξi,E ). Then, we need to extend the dimensionless equation
(36) to the three-dimensional case with f̂ = f̂ (xi, ζi, Ê ), i.e.,

ζi
∂ f̂
∂xi

=
2√
π

Q̂( f̂ ). (118)

In this case, the parameters ρ−, T−, and p− in (35) should be interpreted as the reference density,
temperature, and pressure, and the flow velocity vvv or v̂vv has the three components, vvv = (v1, v2, v3)
or v̂vv = (v̂1, v̂2, v̂3). Then, (37)–(42) are valid as they stand.

The analysis here is in parallel to that in Appendix C in [27]. The only difference is that
the internal degrees of freedom δ is constant in [27] but is a function of the temperature T̂ here.
Therefore, we avoid repeating the same equations quoting [27] occasionally and emphasize the
different points.
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C.1 Hilbert expansion

If we introduce a new space coordinates yi = (2/
√

π)θxi [cf. (63)] whose length scale of varia-
tion is of O(1/θ), then, (118) becomes

θζi
∂ f̂
∂yi

= Âc(T̂ )ρ̂(Ĝ − f̂ ). (119)

With the assumption that θ ≪ 1, we expand f̂ as a power series in θ :

f̂ = f̂ (0)+ f̂ (1)θ + f̂ (2)θ 2 + · · · . (120)

Correspondingly, the macroscopic quantities ρ̂ , v̂i, p̂i j , ..., which are represented by ĥ, are also
expanded as

ĥ = ĥ(0)+ ĥ(1)θ + ĥ(2)θ 2 + · · · . (121)
The expansions of ρ̂ , v̂i, p̂i j , êtr, êint, and thus ê follow straightforwardly from (38c), (38d), and
(39). The expressions of the expansion coefficients ρ̂(k) (k = 0, 1, 2, . . . ), v̂(0)i , v̂(1)i , p̂(0)i j , and p̂(1)i j

in terms of f̂ (l) (l = 0, 1, . . . ) are given by (C5), (C6), and (C7) in [27], and the expressions of
ê(k), ê(k)tr , and ê(k)int (k = 0, 1) are given as

ê(k) = ê(k)tr + ê(k)int , (k = 0, 1), (122)

ê(0)tr =
1

ρ̂(0)

∫ ∫ ∞

0
|ζζζ − v̂vv(0)|2 f̂ (0)dÊ dζζζ , (123a)

ê(1)tr =
1

ρ̂(0)

∫ ∫ ∞

0
|ζζζ − v̂vv(0)|2 f̂ (1)dÊ dζζζ − ρ̂(1)

ρ̂(0) ê(0)tr , (123b)

ê(0)int =
1

ρ̂(0)

∫ ∫ ∞

0
Ê f̂ (0)dÊ dζζζ , (124a)

ê(1)int =
1

ρ̂(0)

∫ ∫ ∞

0
Ê f̂ (1)dÊ dζζζ − ρ̂(1)

ρ̂(0) ê(0)int . (124b)

With the expansion of ê, (38e) leads to the expansion of T̂ and thus that of δ . To be more specific,
their expansion coefficients are obtained as

T̂ (0) = Ê−1(ê(0)), T̂ (1) =
(dÊ

dT̂

)−1

T̂=T̂ (0)
ê(1), (125a)

δ (0) = D̂(T̂ (0)), δ (1) =
(dD̂

dT̂

)
T̂=T̂ (0)

T̂ (1). (125b)

Then, the expansions of T̂tr, T̂int, and T̂rel follow from (38f). That is, their expansion coefficients
are obtained as

T̂ (0)
tr = (2/3)ê(0)tr , T̂ (1)

tr = (2/3)ê(1)tr , (126a)

T̂ (0)
int = 2ê(0)int /δ (0), T̂ (1)

int = (2/δ (0))[ê(1)int − (δ (1)/δ (0))ê(0)int ], (126b)

T̂ (0)
rel = T̂ (0)

int , T̂ (1)
rel = T̂ (1)

int + T̂ (0)− T̂ (0)
int . (126c)

In consequence, Âc(T̂ ) and Ĝ are also expanded in θ . The expansion of Âc(T̂ ) is the same
as (C12a), (C13a), and (C13b) in [27], that is, the expansion coefficients Â(0)

c and Â(1)
c are given

as

Â(0)
c = Âc(T̂ (0)), Â(1)

c =
(dÂc

dT̂

)
T̂=T̂ (0)

T̂ (1). (127)
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On the other hand, the expansion of Ĝ , which is in the form of (C12b) in [27], has slightly
different expansion coefficients from (C13c), (C13d), and (C14) in [27]. That is, the coefficients
Ĝ (0) and Ĝ (1) are obtained as follows:

Ĝ (0) =
ρ̂(0)Ê δ (0)/2−1

π3/2([det(T̂)](0))1/2(T̂ (0)
rel )

δ (0)/2Γ (δ (0)/2)

× exp

(
−(T̂−1)

(0)
i j (ζi − v̂(0)i )(ζ j − v̂(0)j )− Ê

T̂ (0)
rel

)
, (128a)

Ĝ (1) = Ĝ (0)Ψ (1), (128b)

where

Ψ (1) =
δ (1)

2

[
ln

Ê

T̂ (0)
rel

− Γ ′(δ (0)/2)
Γ (δ (0)/2)

]
+

ρ̂(1)

ρ̂(0) −
1
2
[det(T̂)](1)

[det(T̂)](0)

+
T̂ (1)

rel

T̂ (0)
rel

(
Ê

T̂ (0)
rel

− δ (0)

2

)
− (T̂−1)

(1)
i j (ζi − v̂(0)i )(ζ j − v̂(0)j )

+(T̂−1)
(0)
i j v̂(1)i (ζ j − v̂(0)j )+(T̂−1)

(0)
i j (ζi − v̂(0)i )v̂(1)j . (129)

Here, T̂(k), (T̂−1)(k), and [det(T̂)](k) (k = 0 and 1) are the coefficients of the expansions of T̂,
T̂−1, and det(T̂) in the form of (C15) in [27] and are given by (C19), (C21), and (C22) in [27].

With these preparations, we can proceed with the procedure following Appendix C in [27].
The integral equations for the expansion coefficients f̂ (0) and f̂ (1) [cf. (120)] are readily obtained
in the form of (C23) and (C25) in [27], i.e.,

f̂ (0) = Ĝ (0), (130a)

f̂ (1) = Ĝ (1)− 1

Â(0)
c ρ̂(0)

ζi
∂ f̂ (0)

∂yi
, (130b)

with the constraint ∫ ∫ ∞

0

 ζ j
ζiζ j

(ζ 2
k + Ê )ζ j

 ∂ f̂ (0)

∂y j
dÊ dζζζ = 0, (131)

for (130b).
The solution of (130a) is obtained in the following form:

f̂ (0) =
ρ̂(0)Ê δ (0)/2−1

(πT̂ (0)
tr )3/2(T̂ (0)

int )
δ (0)/2Γ (δ (0)/2)

exp

(
−
(ζk − v̂(0)k )2

T̂ (0)
tr

− Ê

T̂ (0)
int

)
, (132)

where δ (0) is related to T̂ (0)
tr and T̂ (0)

int by the relations

δ (0) = D̂(T̂ (0)), T̂ (0) = Ê−1(3T̂ (0)
tr /2+δ (0)T̂ (0)

int /2). (133)

These relations are obtained from (122), (125), (126a), and (126b). In (132), ρ̂(0), v̂(0)i , T̂ (0)
tr ,

and T̂ (0)
int are unknown functions, and their equations are shown later. It is seen from (81) and

(82) that f̂ (0) is the dimensionless form of a local equilibrium distribution for θ = 0. This f̂ (0)

is of the same form as f̂ (0) in [27] [(C30) there] except that the constant δ is replaced with the
function δ (0).
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From (130) and after some algebra, the first-order solution f̂ (1) can be expressed in the
following form [cf. (C31) and (C33) in [27]]:

f̂ (1) = f̂ (0)Ψ (1)− 1

Â(0)
c ρ̂(0)

ζi
∂ f̂ (0)

∂yi
, (134)

where

Ψ (1) =
δ (1)

2

[
ln

Ê

T̂ (0)
int

− Γ ′(δ (0)/2)
Γ (δ (0)/2)

]
+

ρ̂(1)

ρ̂(0) +2
(ζ j − v̂(0)j )v̂(1)j

T̂ (0)
tr

+
1

T̂ (0)
tr

[
T̂ (1)

tr +
(

T̂ (0)− T̂ (0)
tr

)][ (ζk − v̂(0)k )2

T̂ (0)
tr

− 3
2

]

+
1

T̂ (0)
int

[
T̂ (1)

int +
(

T̂ (0)− T̂ (0)
int

)]( Ê

T̂ (0)
int

− δ (0)

2

)

+ν
1

ρ̂(0)T̂ (0)
tr

(
p̂(1)i j − 1

3
p̂(1)kk δi j

)
(ζi − v̂(0)i )(ζ j − v̂(0)j )

T̂ (0)
tr

. (135)

The solution f̂ (1), given by (134) with (132) and (135), is of the same form as f̂ (1) in [27]
[cf. (C31) with (C30) and (C33) there], except that the new term (δ (1)/2) [ ln(Ê /T̂ (0)

int ) −
Γ ′(δ (0)/2)/Γ (δ (0)/2) ] appears and the constant δ is replaced with the function δ (0) in (135).
It is noted that in connection with the new term, the following relation holds:

∫ ∞

0

[
ln

Ê

T̂ (0)
int

− Γ ′(δ (0)/2)
Γ (δ (0)/2)

]
f̂ (0)dE = 0. (136)

C.2 Macroscopic equations

Substituting (132) into (131), we obtain the following equations containing six functions ρ̂(0),
v̂(0)j , T̂ (0)

tr , and T̂ (0)
int [cf. (C34) in [27]]:

∂
∂y j

(
ρ̂(0)v̂(0)j

)
= 0, (137a)

∂
∂y j

(
1
2

ρ̂(0)T̂ (0)
tr δi j + ρ̂(0)v̂(0)i v̂(0)j

)
= 0, (137b)

∂
∂y j

[
ρ̂(0)v̂(0)j (v̂(0)k )2 + ρ̂(0)v̂(0)j

5T̂ (0)
tr +δ (0)T̂ (0)

int
2

]
= 0. (137c)

By appropriate combination, these equations can also be transformed into the following form:

∂
∂y j

(
ρ̂(0)v̂(0)j

)
= 0, (138a)

ρ̂(0)v̂(0)j
∂ v̂(0)i
∂y j

+
1
2

∂
∂yi

(
ρ̂(0)T̂ (0)

tr

)
= 0, (138b)

v̂(0)j
∂

∂y j

(
3T̂ (0)

tr +δ (0)T̂ (0)
int

)
+2T̂ (0)

tr
∂ v̂(0)j

∂y j
= 0, (138c)
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where we have made use of (138b) multiplied by v̂(0)i in deriving (138c). It should be noted here
that δ (0) is a function of T̂ (0)

tr and T̂ (0)
int defined implicitly by (133). Therefore, we need one more

equation to close the system.
As in [27], we calculate the first-order quantities ρ̂(1), v̂(1)i , p̂(1)i j , T̂ (1)

tr , and T̂ (1)
int using their

definitions and (134). Because of the relation (136), these calculations of ρ̂(1), v̂(1)i , p̂(1)i j , and

T̂ (1)
tr are basically the same as those in [27]. More specifically, the calculation for ρ̂(1) and v̂(1)i

gives trivial (or consistent) result, i.e., ρ̂(1) = ρ̂(1) and v̂(1)i = v̂(1)i , and that for p̂(1)i j gives the

following expression of p̂(1)i j :

p̂(1)i j = (ρ̂(0)T̂ (1)
tr + ρ̂(1)T̂ (0)

tr )δi j +
1

1−ν
ρ̂(0)

(
T̂ (0)− T̂ (0)

tr

)
δi j

− 1
1−ν

T̂ (0)
tr

Â(0)
c

∂ v̂(0)i
∂y j

+
∂ v̂(0)j

∂yi
+

∂ v̂(0)k
∂yk

δi j


− 1

1−ν
v̂(0)k

Â(0)
c ρ̂(0)

∂
∂yk

(
ρ̂(0)T̂ (0)

tr

)
δi j. (139)

The calculation of T̂ (1)
tr using (123b) and (126a), or equivalently ρ̂(0)T̂ (1)

tr + ρ̂(1)T̂ (0)
tr =(1/3)p̂(1)kk ,

and (137a) lead to the following relation:

v̂(0)k
∂ T̂ (0)

tr

∂yk
= Â(0)

c ρ̂(0)
(

T̂ (0)− T̂ (0)
tr

)
− 2

3
T̂ (0)

tr
∂ v̂(0)k
∂yk

, (140)

because the term ρ̂(0)T̂ (1)
tr + ρ̂(1)T̂ (0)

tr is canceled out. On the other hands, the calculation of T̂ (1)
int

is slightly different from that in [27] because of the presence of the term containing δ (1) in
(126b). If we calculate T̂ (1)

int using (124b) and (126b), or equivalently

ρ̂(0)T̂ (1)
int + ρ̂(1)T̂ (0)

int +
δ (1)

δ (0) ρ̂(0)T̂ (0)
int

=
2

δ (0)

∫ ∫ ∞

0
Ê f̂ (1)dÊ dζζζ

=
2

δ (0)

∫ ∫ ∞

0
Ê

(
f̂ (0)Ψ (1)− 1

Â(0)
c ρ̂(0)

ζk
∂ f̂ (0)

∂yk

)
dÊ dζζζ , (141)

then the term ρ̂(0)T̂ (1)
int + ρ̂(1)T̂ (0)

int +(δ (1)/δ (0))ρ̂(0)T̂ (0)
int is canceled out, and we obtain

v̂(0)k
∂ (δ (0)T̂ (0)

int )

∂yk
= Â(0)

c δ (0)ρ̂(0)
(

T̂ (0)− T̂ (0)
int

)
, (142)

where use has been made of (137a). Here we should note that Â(0)
c and δ (0) are the known

functions of T̂ (0), which is expressed in terms of T̂ (0)
tr and T̂ (0)

int by (133). Therefore, (140) and

(142) contain only ρ̂(0), v̂(0)j , T̂ (0)
tr , and T̂ (0)

int . This means that either (140) or (142) can be the
additional equation to make the system (137) closed. In fact, we can choose one of them because
(140) and (142) are not independent. More specifically, if we add (140) multiplied by 3 and (142)
and take into account the relation

(3+δ (0))T̂ (0) = 3T̂ (0)
tr +δ (0)T̂ (0)

int , (143)

which follows from (40b) and (133), then we obtain (138c).
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In summary, the macroscopic system for ρ̂(0), v̂(0)j , T̂ (0)
tr , and T̂ (0)

int , which corresponds to the
slowly varying solution, is provided by (137) [or (138)] and (140) or (142). In the calculation
for the structure of a shock wave in CO2 gas in Sect. 3.7, we use (137) and (142).

In concluding this appendix, we give a brief remark on the ET6 system that has been used
in the calculation of shock-wave structure in [53,40,54]. The linear ET6 system is a hyperbolic
system for the 6 macroscopic variables, the density ρ , flow velocity vi, pressure p, and dynamic
pressure Π , valid for a general polyatomic gas with temperature-dependent specific heats but
for small deviation from a local equilibrium state. It was derived macroscopically by the phe-
nomenological theory of extended thermodynamics in [6], and its version for a gas with constant
specific heats has been derived from kinetic theory with appropriate closure assumptions [6,44].
It has also been extended to the case where the deviation from the equilibrium state is large in [5]
(the nonlinear ET6 system), which is the same as the linear ET6 system except that the nonlin-
earity appears in the source term in the equation for Π . More recently, the ET6 system has been
derived from kinetic theory in a more general setting, which allows the temperature-dependent
specific heats, by suitable closure assumptions [9].

Let us consider the ET6 system presented by (49) in [9] and adopt the BGK source term,
(113) in [9]. The comparison in the level of kinetic theory shows that Π and ε there are, respec-
tively, equivalent to pkk/3− p = Rρ(Ttr −T ) and E(T ) in the present paper. We further note that
E(T ) = (3+δ )RT/2 and T = (3Ttr +δTint)/(3+δ ), where δ = D(T ), and use these relations
in the steady version (∂/∂ t = 0) of (49) with (113) in [9]. Then, the first to the third equations
are transformed to the dimensional versions of (137a), (137b), and (137c), respectively, and the
fourth equation is reduced to

vi
∂δTint

∂Xi
=

δ
τ
(T −Tint), (144)

where τ is the BGK relaxation time, and Xi is used for the dimensional space coordinates in
accordance with the notation in the present paper. If we let τ = 1/θρAc(T ), the dimensionless
version of (144) is found to be the same as (142). In summary, the macroscopic equations (137)
and (142) for small θ are essentially the same as the steady version of the ET6 system. Since it is
just a straightforward matter to include the time-derivative terms in (137) and (142), the present
asymptotic analysis for small θ (or large relaxation time) provides an alternative way to derive
the ET6 system from kinetic theory without any closure assumptions.

D Stability analysis for (72)

In this appendix, we discuss the local stability of the equilibrium solutions of (72). We first
consider the equilibrium point v̂1 = v̂− and then v̂1 = v̂+.

Let us rewrite (72a) in the following form:

dv̂1

dy1
= F(v̂1), (145)

where

F(v̂1) = G(v̂1)P(v̂1), G(v̂1) =
3v̂−

8
Âc(T̂ )

v̂2
1(v̂∗− v̂1)

, P(v̂1) = v̂2
1 −

1+2v̂2
−

2v̂−
v̂1 +

1
2

T̂ , (146)

and v̂∗ is given by (73). In addition, since Ê(T̂ ) = (3+δ )T̂/2, (72c) can be rewritten as

T̂ = Ê−1(ê), ê =
3+δ−

2
+(v̂1 − v̂−)

(
v̂1 −

1+ v̂2
−

v̂−

)
. (147)

Let us investigate the behavior of F(v̂1) near v̂1 = v̂−. Since P(v̂−) = 0, F(v̂1) is Taylor
expended around v̂1 = v̂− as

F(v̂1) = G(v̂−)
(

dP
dv̂1

)
v̂1=v̂−

(v̂1 − v̂−)+O(|v̂1 − v̂−|2). (148)
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Noting that dÊ(T̂ )/dT̂ = Ĉv(T̂ ) [cf. (40a)], we obtain, from (146) and (147), that

dP(v̂1)

dv̂1
= 2v̂1 −

1+2v̂2
−

2v̂−
+

1
Ĉv(T̂ )

(
v̂1 −

1+2v̂2
−

2v̂−

)
, (149)

which leads to (dP/dv̂1)v̂1=v̂− = v̂−−(γ−/2v̂−), where use has been made of the fact that T̂ = 1
at v̂1 = v̂− and γ− = 1+R/Cv(T−) = 1+ 1/Ĉv(1) [cf. (30)]. Therefore, with the help of (73),
(148) is transformed to the following expression:

F(v̂1) =
3Âc(1)

8v̂−

v̂−− (γ−/2v̂−)
v̂∗− v̂−

(v̂1 − v̂−)+O(|v̂1 − v̂−|2)

=− Âc(1)
v̂−

v̂2
−− (γ−/2)
v̂2
−− (5/6)

(v̂1 − v̂−)+O(|v̂1 − v̂−|2). (150)

In [27] for a gas with constant specific heats, it is shown that the slowly varying solution
exhibits Type-A profile for M̃− < 1 < M−, Type-B profile for M̃− = 1 < M−, and Type-C profile
for 1 < M̃− < M− (see the last paragraph in Sect. 3.6.1 and [52]). Here, it should be noted that
M̃− = M−

√
3γ−/5 < M− holds from (114b) (with Ttr− = T−) and γ− < 5/3. We observe (150)

according to this classification assuming that v̂1 decreases monotonically from v̂− to v̂+ as y1
changes from −∞ to ∞.

From (114b), it follows that v̂− =
√

5/6M̃− =
√

γ−/2M−. Therefore, we can see the fol-
lowing:

(i) For M̃− < 1 < M−, the inequality
√

γ−/2 < v̂− <
√

5/6 holds, so that the coefficient of v̂1 −
v̂− in the second line in (150) is positive. This means that for any v̂1 = v̂0 (< v̂−) sufficiently close
to v̂−, F(v̂1) and thus dv̂1/dy1 are negative. Therefore, as y1 moves from its value corresponding
to v̂0 to −∞, v̂1 approaches v̂−. That is, v̂− is a locally and asymptotically stable equilibrium
point as y1 tends to −∞.

(ii) For 1 < M̃−(< M−), the same coefficient of v̂1 − v̂− in (150) is negative because (
√

γ−/2 <

)
√

5/6< v̂− holds. Therefore, since dv̂1/dy1 is positive for any v̂1 = v̂0 (< v̂−) sufficiently close
to v̂−, v̂1 does not converge to v̂− as y1 tends to −∞. That is, v̂− is an unstable equilibrium point
as y1 tends to −∞.

(iii) For M̃− = 1(< M−), it follows from (114b) and (73) that v̂− = v̂∗ =
√

5/6. In this case,
G(v̂1) is singular at v̂1 = v̂−. However, if we use the Taylor expansion of P(v̂1) around v̂1 = v̂−
in F(v̂1) = G(v̂1)P(v̂1), the factor v̂1 − v̂∗ in the denominator of G(v̂1) is canceled out, and we
have the following expression of F(v̂1):

F(v̂1) =−3v̂−
8

Âc(T̂ )
v̂2

1

[
1
2

√
6
5

(
5
3
− γ−

)
+O(|v̂1 − v̂−|)

]
. (151)

Since F(v̂−) =−(9/40)Âc(1)(5/3−γ−)< 0 because of γ− < 5/3, v̂1 = v̂− is not an equilibrium
point of (72) or (145).

Now we consider the behavior of F(v̂1) near v̂1 = v̂+. With the help of the relations 1/v̂−+

2v̂− = T̂+/v̂++ 2v̂+ [cf. (70) and (71)] and γ+ = [Cv(T+)+R]/Cv(T+) = 1+ 1/Ĉv(T̂+), (149)
gives the following expression of dP(v̂1)/dv̂1 at v̂1 = v̂+:(

dP
dv̂1

)
v̂1=v̂+

= v̂+− γ+T̂+
2v̂+

. (152)

Since P(v̂+) = 0, F(v̂1) is Taylor expanded around v̂1 = v̂+ as

F(v̂1) = G(v̂+)
(

dP
dv̂1

)
v̂1=v̂+

(v̂1 − v̂+)+O(|v̂1 − v̂+|2)

=− v̂−Âc(T̂+)
v̂2
+

v̂2
+− γ+T̂+/2
v̂2
+−5T̂+/6

(v̂1 − v̂+)+O(|v̂1 − v̂+|2), (153)
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where use has been made of the relation v̂∗ = (5/16)(1/v̂− + 2v̂−) = (5/16)(T̂+/v̂+ + 2v̂+).
Since the Mach number at downstream infinity M+ = v+/(γ+RT+)1/2 = (2/γ+T̂+)1/2v̂+ is less
than 1 [cf. the last paragraph in Sect. 3.1], we have v̂+ < (γ+T̂+/2)1/2 < (5T̂+/6)1/2 because
of γ+ < 5/3. Therefore, the coefficient of v̂1 − v̂+ in the second line in (153) is negative. This
means that for any v̂1 = v̂0 (> v̂+) sufficiently close to v̂+, F(v̂1) and thus dv̂1/dy1 are negative.
Therefore, as y1 moves from its value corresponding to v̂0 to ∞, v̂1 approaches v̂+. That is, v̂+ is
a locally and asymptotically stable equilibrium point as y1 tends to ∞ for any M−.

From the local stability and instability of the equilibrium points discussed above, we can
conjecture the following behavior of the solution of (72):

(i) For M̃− < 1 < M−, the solution provides a smooth and monotonically decreasing profile of
v̂1 ranging from v̂− to v̂+ as y1 changes from −∞ to ∞.

(ii) For 1 < M̃−(< M−), although the profile of v̂1 approaches v̂+ as y1 → ∞, it cannot approach
v̂− as y1 → −∞. Therefore, (72) should be solved from y1 = y0, where y0 is a finite value, to
y1 = ∞, and the solution gives a partial profile of v̂1 for y0 ≤ y1 < ∞.

(iii) For M̃− = 1(< M−), v̂1 = v̂− is not an equilibrium point of (72). Therefore, the solution
does not approach v̂− as y1 → −∞. However, one may solve (72) under the initial condition
that v̂1 = v̂− at y1 = y0 with a finite y0. Then, the solution exhibits the profile of v̂1 that starts
suddenly from v̂− at y1 = y0 and approaches v̂+ as y1 → ∞. Since dv̂1/dy1 < 0 at y1 = y0, the
profile has a corner there.

These properties of the slowly varying solution are essentially the same as that in the case of
a gas with constant specific heats [27], and case (i) corresponds to Type-A profile, case (ii)
corresponds to Type-C profile, and case (iii) corresponds to Type-B profile.
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