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Abstract

In this paper, we propose an iterative algorithm using polar decomposition to
approximate a channel characterized by a single unitary matrix based on input-
output quantum state pairs. In limited data, we state and prove that the optimal
solution obtained from our method using one pair with a specific structure will
generate an equivalent class, significantly reducing the dimension of the searching
space. Furthermore, we prove that the unitary matrices describing the same
channel differ by a complex number with modulus 1. We rigorously prove our
proposed algorithm can ultimately identify a critical point, which is also a local
minimum of the established objective function.

Keywords: Quantum channel, Stiefel manifold, Polar Decomposition

1 Introduction

A unitary quantum channel describes how a quantum state evolves in a closed quan-
tum system while preserving coherence. Many studies of physical phenomena and
circuit designs rely on closed quantum systems because they enable reversible and
coherent quantum evolution. For instance, Schrödinger’s equation models the evolution
of pure quantum states in such systems, while the Liouville-von Neumann equation
extends this framework to mixed states [6]. Additionally, any quantum circuit can be
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viewed as implementing a unitary quantum channel, as it operates through a sequence
of unitary transformations [7]. Moreover, understanding the dynamics of a quantum
mechanism or generating an executable quantum circuit that is sufficiently close to a
quantum process is an important task [10]. Beyond these scientific demands, a precise
characterization of a quantum system can enhance understanding in many quantum
applications, such as communication [11], control theory [12], and information theory
[13].

There are various methods that focus on exploring a quantum channel from given
input and output data. Readers can find [9] for prescribing a quantum channel using
quantum measurements. Besides, the authors [8] employ Pauli measurements and
state the maximal requirement of the measurements to uniquely determine the desired
unknown channel. In [14], the authors proposed a fidelity-based loss function to find
the best unitary quantum channel that matches the input-output pairs. Later, in [10],
a trace-distance-based shallow tomography method was introduced. In addition to
traditional methods, many machine learning-based approaches have been developed
to tackle such problems; for more details, readers are encouraged to explore [16], [17],
[18], [15], and others.

Beyond algorithms, a notable analysis brought by [20] shows that there require
4n2 − 2n − 4 Hermitian matrices to uniquely identify the Choi representation of a
channel that maps Cn to Cn. Our research aims to propose an effective and efficient
method that uses limited data to reach the unitary matrix that describes the unknown
quantum channel to reduce the search space. To the best of our knowledge, the use
of matrix optimization methods to solve the quantum channel identification problem
has not yet been explored.

To begin, we introduce some notations to facilitate our later discussions. Let Sn

denote the set of n-by-n unitary matrices:

Sn := {U ∈ Cn×n : U∗U = In},

where U∗ is the conjugate transpose of U , and In is the identity matrix of size n× n.
Note that the dimension of Sn is n2.

Given a sequence of Hermitian positive definite matrices (ρ, σ), this paper focuses
on solving the following optimization problem:

Problem 1

Minimize g(U) :=
1

2
∥σ − UρU∗∥2F , (1a)

subject to U ∈ Sn (1b)

where ∥ · ∥F denotes the Frobenius norm. Following the restriction stated in (1), the
search space has dimension O(n2). This presents a challenge in finding the optimal
solution when n is large enough.

We aim to propose a convergent, first-order matrix algorithm that does not rely
on massive amounts of data, unlike other approaches that require large datasets to
achieve the approximation goal. Our method embeds the Stiefel manifold into stan-
dard Euclidean space and utilizes the polar decomposition to generate a convergent
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sequence, ensuring that the objective function decreases and ultimately approaches a
local minimum solution.

Our contributions are four folds:

• We state and prove in Theorem 2 that if a quantum channel can be expressed as
Φ(ρ) = UρU∗ where ρ has non-degenerated eigenvalues, then all possible U can
form Φ are distinguished by a complex scalar of modulus 1.

• Casting the problem to an optimization problem by defining an objective function
constraining on the Stiefel manifold. We then propose an algorithm based on polar
decomposition to reach an optimal solution.

• Rigorously prove the proposed algorithm monotonely decreases the objective value
and converges to the set of critical points. These results build up a cornerstone for
further reconstructing the unknown unitary channel using limited data.

• Propose a reconstruction process to recover the unknown U which describes the
channel Φ(ρ) = UρU∗ for U ∈ Cn×n using only n2 + 3n quantum observables and
operations. A non-degenerate quantum state ρ is the key ingredient in the procedure,
which provides a sufficient condition allowing us to adopt the Theorem 1 to decrease
the searching dimension to n.

The remainder of the paper is organized as follows. In Section 2, we provide related
preliminaries, including a precise characterization of the tangent space to Sn, and state
the properties of the optimal solutions using one-shot data and extra data. In Section 3,
we present the polar decomposition-based algorithm to solve the optimization problem.
Later on, in Section 4, we analyze the proposed method to ensure the loss function is
decreasing following our method and prove the related convergence issue. In Section
5, we outline the reconstruction steps to recover U from the solution computed by our
proposed algorithm. We then assess the number of computational operations required.
In Section 6, we verify our theoretical results by numerical examples, including a real-
world application in which the objective is to recover an unknown quantum circuit.
Finally, we close our paper in the conclusion section.

2 Preliminaries

In this section, we revisit essential concepts to support our upcoming discussion.
Casting the optimization problem 1 as the following problem.

Minimize f(X), (2a)

subject to X ∈ Sn. (2b)

For any given complex matrix X, suppose that XRe and XIm represent the real
and imaginary parts of X, respectively. Let γ : R → Sn be a smooth mapping curve
in Sn such that γ(0) = X ∈ Sn. Then

df(γ(t))

dt

∣∣∣∣
t=0

= tr

([
∂f(X)

∂XRe

]⊤
˙γRe(0)

)
+ tr

([
∂f(X)

∂XIm

]⊤
˙γIm(0)

)
(3)
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under the assumption of continuity of the function
∂f

∂XRe
or

∂f
∂XIm

. Here, the superscript

”⊤” denotes the transpose of the matrix. Since Sn is an embedded submanifold of the
Euclidean space Cn×n [4], i.e., γ(t) ∈ Cn×n, γ(0) = X, and γ∗(t)γ(t) = In for all t, it
follows by directly differentiating that

γ̇∗(t)γ(t) + γ(t)∗γ̇(t) = 0. (4)

This implies that the tangent space to Sn at X, denoted by TXSn, is given by:

TXSn = {Z ∈ Cm×m : X∗Z + Z∗X = 0}
= {Z ∈ Cm×m : X∗Z is skew-Hermitian} (5)

= XHn,

where Hn denotes the space of all n × n skew-Hermitian matrices (see also [3] for
further details). Correspondingly, the orthogonal complement NXSn of TXSn is given
by:

NXSn = XH⊥
n . (6)

To determine the direction of motion from a point X ∈ Sn that leads to the most
significant decrease in the objective function (2), we use a real-valued inner product
defined and its corresponding norm as follows:

⟨A,B⟩R = Re(tr(A∗B)), (7)

(8)

where A and B are complex n × n matrices in TXSn, Re(·) denotes the real part of
a complex number, and tr(·) denotes the trace of a square matrix. Let ∇f(X) be the
matrix defined by

∇f(X) =
∂f(X)

∂XRe
+ i

∂f(X)

∂XIm
.

The (normalized) direction of the steepest descent on TXSn is then given by

ξX = argmin
ξ∈TXSn,∥ξ∥X=1

⟨∇f(X), ξ⟩R, (9)

which simplifies to
ξX = −ProjTXSn

(∇f(X)),

where ProjTXSn
(∇f(X)) denotes the projection of ∇f(X) onto the tangent space

TXSn.
From (5) and (6), we observe that any matrix H ∈ Cn×n can be uniquely

decomposed into components in TXUm and NXUm as follows:

H = X

{
1

2
(X∗H −H∗X)

}
+X

{
1

2
(X∗H +H∗X)

}
= Xskew(X∗H) +Xherm(X∗H), (10)
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where herm(A) and skew(A) are defined as herm(A) := 1
2 (A + A∗) and skew(A) :=

1
2 (A−A∗), respectively. Using (10), we can explicitly express the projection of ∇f(X)
at X onto TXSm as

ProjTXSn
(∇f(X)) = Xskew(X∗∇f(X)). (11)

Besides the geometric properties of the Stiefel manifold, we characterize the col-
lection of solutions (1) that result in zero objective function value forms an equivalent
class. To begin, we define the concept of a non-degenerate eigenvalue, which is essential
for understanding the structure of unitary transformations.

Definition 1 An eigenvalue of a matrix A is said to be non-degenerate if its corresponding
eigenspace is one-dimensional.

Additionally, we introduce a relation between unitary matrices through conjugation
by a unitary matrix and multiplication with a diagonal matrix.

Definition 2 Let V ∈ Cn and V V ∗ = V ∗V = I. If we say U1#V U2, then there must exist
a diagonal matrix D = diag(eiθ1 · · · eiθn) such that

U1 = U2V DV ∗,

where θis are real values.

This relationship can be directly demonstrated to satisfy the properties of an
equivalence relation.

Property 2.1. #V is an equivalent relation.

Theorem 1 Let σ and ρ be Hermitian matrices with non-degenerate eigenvalues. Suppose
there exists a subset G of unitary matrices such that

σ = UρU∗ for every U ∈ G.

Let V denote the collection of eigenvectors of ρ. Then, if the eigenvectors of ρ and σ are
arranged in the same order as in V , the set G forms an equivalence class under the relation
#V .

Proof Suppose there exist two unitary matrices U1 and U2 such that

σ = U1ρU
∗
1 = U2ρU

∗
2 .

Then,

U1ρU
∗
1 = U2ρU

∗
2 .

Multiplying on the left by U∗
2 and on the right by U1 yields

U∗
2U1ρ = ρU∗

2U1.
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Since ρ is Hermitian, it is diagonalizable. Let (λ, v) be an eigenpair of ρ satisfying ρv = λv.
Then,

ρ (U∗
2U1v) = U∗

2U1ρv = λ (U∗
2U1v).

This shows that U∗
2U1v is also an eigenvector of ρ corresponding to the eigenvalue λ. Because

the eigenvalue λ is non-degenerate, its eigenspace is one-dimensional, and hence

U∗
2U1v = eiθv

for some real θ that may depend on v. Since this holds for every eigenvector v of ρ (with the
eigenvectors ordered consistently), the matrix U∗

2U1 can be expressed as

U∗
2U1V = V D ⇒ U1 = U2V DV ∗,

where D = diag(eiθ1 · · · eiθn). Thus, we demonstrate that if U1 and U2 are elements of G,
then U1#V U2. □

Finally, we now show that if a channel can be represented as

Φ(ρ) = UρU∗,

by a unitary U , this representation is unique up to a global phase. In other words, if
two unitary matrices U and V define the same channel, they differ only by a complex
scalar of modulus one.

Theorem 2 Suppose U and V are unitary matrices such that

UρU∗ = V ρV ∗

for every Hermitian matrix ρ with Tr(ρ) = 1. Then, there exists a scalar µ with |µ| = 1 such
that

U = µV.

Proof Since

UρU∗ = V ρV ∗

for all such ρ, define the matrix M = V ∗U , then we have Mρ = ρM for every Hermitian
matrix ρ with its trace equal to 1.

Choose the standard basis {ei}ni=1 of Rn. Any Hermitian matrix ρ with trace 1 can be
expressed on this basis as

ρ =

n∑
i=1

ρii eie
T
i +

∑
i<j

ρij (eie
T
j + eje

T
i ),

with
∑n

i=1 ρii = 1 and each ρij ∈ R. Express M in the same basis:

M =

n∑
p,q=1

Mpq epe
T
q .

Now, the commutation relation Mρ = ρM must hold for all such ρ. First, we are allowed to
consider the effect on the matrices eie

T
i :

M eie
T
i = eie

T
i M.
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A straightforward calculation using the above representations shows that this forces Mpq = 0
whenever p ̸= q; that is, M must be diagonal.
Next, look at the matrices eie

T
j + eje

T
i for i ̸= j. The relation

M(eie
T
j + eje

T
i ) = (eie

T
j + eje

T
i )M

implies that the diagonal entries of M satisfy Mii = Mjj for all i, j.
Finally, because U and V are unitary, so is M = V ∗U . Hence, we have

MM∗ = I,

which implies that each diagonal entry of M must have absolute value one; that is, |Mii| = 1.
Since M is diagonal with all entries equal to the same complex number of modulus one, we
can write M = µI with |µ| = 1. Therefore,

V ∗U = µI =⇒ U = µV,

completing the proof. □

3 Iterative methodology

To efficiently compute the optimal solution, it is essential to introduce a critical result
that forms the foundation of our subsequent argument. For clarity in the following
discussion, we also use Re(X) and Im(X) to denote the real and imaginary parts of
any matrix X, respectively.

Lemma 3.1. Given two Hermitian matrices A and B, let h : Cn×n → R be a function
denoted by

h(X) = Re(⟨A,XBX∗⟩).
Then the partial derivatives of h with respect to variables XRe and XIm are

∂h

∂XRe
= 2Re(AXB),

∂h

∂XIm
= 2Im(AXB).

(12)

Proof Rewrite h(X) as

h(X) =
1

2

(
⟨A,XBX⊤⟩R + ⟨XBX∗, A⟩R

)
where

⟨X,Y ⟩R :=

n∑
i,j=1

xijyij

stands for the formal inner product for two matrices X and Y over the real field.
Considering X and X as independent variables, we formally take the Fréchet derivative

of h as an action on an arbitrary ∆X ∈ Cn×n. Denoting this action by ., we obtain by direct
computation that

∂h

∂X
.∆X = ⟨AXB,∆X⟩R,

∂h

∂X
.∆X = ⟨AXB,∆X⟩R.
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According the Wirtinger calculus, the partial derivatives of h with respect to XRe and XIm

can be evaluated as

∂h

∂XRe
=

∂h

∂X
+

∂h

∂X
= 2Re(AXB),

∂h

∂XIm
= i

(
∂h

∂X
− ∂h

∂X

)
= 2Im(AXB).

□

Since g(U) =
1

2
∥σ − UρU∗∥2F is the objective function in Problem 1. Through

direct computation, we obtain

g(U) =
1

2
(∥σ∥2F + ∥ρ∥2F − 2Re(⟨σ, UρU∗⟩)). (13)

Using the result from Lemma 3.1, we can derive the Euclidean gradient of the objective
function g(U) as follows:

Theorem 3 In Problem 1 , the Euclidean derivative of objective function g(U) with respect
to real and imaginary components of U admit the following form:

∂g

∂URe
= −2Re (σUρ) ,

∂g

∂UIm
= −2Im (σUρ) .

(14)

Since the objective function g is constrained to the set of unitary matrices Sn, the
first-order optimality condition for the approximation problem 1 can be derived by
applying by projecting the Euclidean gradient onto Sn. The following theorem shows
that one can obtain the critical point of g by simply applying the polar decomposition
of −∇g given by

−∇g(U) =
∂g(U)

∂URe
+ i

∂g(U)

∂UIm
= 2σUρ.

Theorem 4 Let g : Sn → R be the objective function in Problem 1 and U be a unitary
matrix. Assume that a Hermitian positive definite matrix P exists such that UP = −∇g(U).
Then U is a critical point of the function g constrained to Sn.

Proof It follows from (10) that the projection of −∇g(U) onto Sn can be computed as

U

{
1

2

(
U∗ (−∇g(U))− (−∇g(U))∗ U

)}
.

Given the condition UP = −∇g(U), we have

U∗ (−∇g(U))− (−∇g(U))∗ U = −P + (UP )∗U = 0.

This confirms that if U satisfies UP = −∇g(U), then U is a critical point of the objective
function g. □
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Based on Theorem 4, we propose an algorithm to produce a convergent sequence to
determine a critical point of the objective function g on Sn. By employing the notation
“poldec” to denote the polar decomposition of a given matrix, we present the iterative
procedure in Algorithm 1, which systematically refines the solution through successive
iterations. The convergence properties of the algorithm, along with the conditions that
guarantee convergence to an optimal solution, will be discussed in detail in the next
section.

Algorithm 1

Require: A pair of Hermitian positive definite matrices (σ, ρ) and an initial unitary
matrix U (0). A positive number M to terminate the algorithm.

Ensure: : An approximation of the quantum state σ after the unitary channel U is
applied to the state ρ.

for s = 0, 1 · · · ,M do
[U (s+1), P (s+1)] = poldec

(
2σU (s)ρ

)
.

if
1

2

∥∥∥σ − U (s+1)ρ
(
U (s+1)

)∗∥∥∥2
F
< TOL then

Break
end if

end for

4 Convergence Analysis

To ensure that the proposed algorithm effectively decreases the objective function

g(U) =
1

2
∥σ − UρU∗∥2F ,

and converges uniquely to an optimal unitary matrix Û within the set of unitary
matrices Sn, we must consider a crucial property related to polar decomposition.
This property demonstrates that for any matrix X ∈ Cn×n, its polar decomposition
provides the closest matrix in Sn to itself.

Lemma 4.1. [2, Corollary 2.3] For any matrix X ∈ Cn×n, let X = UP be its polar
decomposition, where U ∈ Sn and P ∈ Cn×n is Hermitian and positive definite. Then,
U is the matrix in Sn that is closest to X, i.e., for any Z ∈ Sn,

∥X − U∥F ≤ ∥X − Z∥F . (15)

We then apply Lemma 4.1 to establish the decreasing behavior of g(U) at each
algorithm iteration.
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Theorem 5 The sequence generated by Algorithm 1 ensures a non-increase in the value of
the function g(U) at each iteration.

Proof For s ≥ 1, the matrix U (s+1), generated by Algorithm 1 follows from the polar decom-
position, which ensures that U (s+1) is the closest unitary matrix to the given matrix at each
iteration. Hence, the update at each step

∥σU (s)ρ− U (s+1)∥2F ≤ ∥σU (s)ρ− U (s)∥2F ,

or equivalently,

−Re
(〈

σ, U (s+1)ρ
(
U (s)

)∗〉)
≤ −Re

(〈
σ, U (s)ρ

(
U (s)

)∗〉)
.

Therefore, we have

g(U (s)) =
1

2

(
∥σ∥2F + ∥ρ∥2F − 2Re

(〈
σ, U (s)ρ

(
U (s)

)∗〉))
≥ 1

2

(
∥σ∥2F + ∥ρ∥2F − 2Re

(〈
σ, U (s+1)ρ

(
U (s)

)∗〉))
.

Let ∆U = U (s+1) − U (s) denote the update step. Since both ρ and σ are positive defi-
nite matrices, we can assert that

〈
σ,∆Uρ (∆U)∗

〉
≥ 0. This follows from the fact that the

inner product of Hermitian positive semidefinite matrices is nonnegative. Moreover, from
Algorithm 1, we know that

U (s+1)P (s+1) = 2σU (s)ρ.

Thus, the update step ∆U is well-defined and satisfies the relationship

Re
(〈

σ, U (s)ρ (∆U)∗
〉)

= Re
(
Tr

(
σU (s)ρ

(
U (s+1)

)∗))
−Re

(
Tr

(
σU (s)ρ

(
U (s)

)∗))
=

1

2
Re

(
Tr

(
U (s+1)P (s+1)

(
U (s+1)

)∗))
− 1

2
Re

(
Tr

(
U (s+1)P (s+1)

(
U (s)

)∗))
=

1

2
Re

(
Tr

(
P (s+1)

(
In −

(
U (s)

)∗
U (s+1)

)))
.

Because the matrix I −
(
U (s)

)∗
U (s+1) is positive semidefinite, and the trace of the product

of two positive semidefinite matrices is nonnegative, we have

Re
(〈

σ, U (s)ρ (∆U)∗
〉)

≥ 0.

Next, observe that

Re
(〈

σ, U (s+1)ρ
(
U (s+1)

)∗〉)
−Re

(〈
σ, U (s+1)ρ

(
U (s)

)∗〉)
= Re

(〈
σ,∆Uρ (∆U)∗

〉)
+Re

(〈
σ, U (s)ρ (∆U)∗

〉)
.

Since both terms on the right-hand side are nonnegative, it follows that

Re
(〈

σ, U (s+1)ρ
(
U (s+1)

)∗〉)
≥ Re

(〈
σ, U (s+1)ρ

(
U (s)

)∗〉)
and subsequently, the function

g satisfies the decreasing property

g(U (s)) ≥ 1

2

(
∥σ∥2F + ∥ρ∥2F − 2Re

(〈
σ, U (s+1)ρ

(
U (s)

)∗〉))
≥ 1

2

(
∥σ∥2F + ∥ρ∥2F − 2Re

(〈
σ, U (s+1)ρ

(
U (s+1)

)∗〉))
= g(U (s+1)),

i.e., the objective function does not increase between iterations, which completes the
proof. □
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Note that in Theorem 5, we have shown that the objective value is decreasing along
the sequence generated by Algorithm 1 unless it attains its local minimum points. Our
next focus is to investigate the convergence of the sequence U (s). To achieve this, we
need to establish the interrelationship governing the updates.

Lemma 4.2. The sequence
{
U (s)

}∞
s=1

generated by algorithm 1 satisfies ∥U (s+1) −
U (s)∥2F → 0 as s → ∞.

Proof Since g is non-increasing along the sequence
{
U (s)

}
, for any given positive number

ϵ, we can select a positive integer s0(ϵ) such that s0(ϵ) is the smallest integer for which

g(U (s))− g(U (s+1)) ≤ ϵ.

Next, we aim to show that ∥U (s) − U (s+1)∥ ≤ ϵ for s > s0(ϵ). Note that

g(U
(s)

) − g(U
(s+1)

) = −Re
(〈

σ, U
(s)

ρ
(
U

(s)
)∗〉)

+ Re
(〈

σ, U
(s+1)

ρ
(
U

(s+1)
)∗〉)

= −Re
(〈

σ, U
(s)

ρ
(
U

(s)
)∗〉)

+ Re
(〈

σ, U
(s+1)

ρ
(
U

(s+1)
)∗〉)

+Re
(〈

σ, U
(s)

ρ
(
U

(s+1)
)∗〉)

− Re
(〈

σ, U
(s)

ρ
(
U

(s+1)
)∗〉)

= −Re
(〈

σ,
(
U

(s)
+ U

(s+1)
)
ρ
(
U

(s) − U
(s+1)

)∗〉)
= Re

(〈
σ,

(
∆U + 2U

(s)
)
ρ (∆U)

∗
〉)

≥ Re
(〈

σ, (∆U) ρ (∆U)
∗〉)

,

The third equality holds from following the equality:

⟨A,B⟩ = tr(AB∗) = tr(A∗B) = ⟨A∗, B∗⟩,

i.e.,

Re
(〈

σ, U (s)ρ
(
U (s+1)

)∗〉)
= Re

(〈
σ, U (s+1)ρ

(
U (s)

)∗〉)
.

since σ and ρ are Hermitian matrices.
To proceed, we first consider the diagonalization of the Hermitian positive definite

matrices ρ and σ. Since ρ and σ are Hermitian, they can be diagonalized as follows{
ρ = QρΛρQ

∗
ρ,

σ = QσΛσQ
∗
σ,

(16)

where Qρ and Qσ are unitary matrices whose columns are the eigenvectors of the Hermi-
tian matrices ρ and σ, respectively, while Λρ and Λσ are diagonal matrices containing their
corresponding non-negative eigenvalues.

By applying the decomposition in (16), we obtain the following expression

Re
(〈
σ, (∆U) ρ (∆U)∗

〉)
= Re(Tr

(
QρΛρQ

∗
ρ(∆U)QσΛσQ

∗
σ(∆U)∗

)
)

= Re
(
Tr

(
(ΛσQ

∗
σ(∆U)∗Qρ)(ΛρQ

∗
ρ(∆U)∗Qσ)

))
.

Let R = Q∗
σ(∆U)∗Qρ. Then, the equation above implies

Re
(
Tr

(
(ΛσR)(ΛρR

∗)
))

= Re

∑
i

∑
j

(ΛσR)ij(ΛρR
∗)ji


= Re

∑
i

∑
j

((Λσ)iiRij((Λρ)jjR
∗)ji


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≥ min
j

{
(Λσ)

2
jj , (Λρ)

2
jj

)∑
i,j

RijR
∗
ji ≥ c∥R∥2F ,

for some c > 0. The third inequality follows from the fact that both ρ and σ have eigenvalues
that are positive and strictly less than one, and that for any two positive numbers, their
product is greater than or equal to the smaller of their squares. Since ∥R∥2F = ∥∆U∥2F , this
completes the proof. □

So far, we have not established the convergence of the sequence. However, since the
generated sequence {U (s)} is bounded, we can conclude that there exists a convergent
subsequence, which satisfies the following property.

Lemma 4.3. If ∇g(U) is nonsingular, then any convergent subsequence generated by
Algorithm 1 has a limit point Û that satisfies the condition

Û = poldec
(
−∇g(Û)

)
,

where Û represents the unitary component obtained from the polar decomposition of
−∇g(Û).

To establish the convergence of the sequence U (s), we begin by introducing three
essential lemmas. These lemmas will help us analyze and demonstrate the convergence
behavior of the sequence generated by Algorithm 1. The first lemma addresses the
general properties of iterative sequences and provides insight into the potential con-
vergence behavior when continuous mappings produce such sequences. This important
finding will help us understand how the sequence changes over time through iterations.

Lemma 4.4. [19, Theorem 1] Let F : M → M be a continuous map over a compact
subset M of a finite-dimensional Euclidean space. Given an initial point U (0) ∈ U ,
consider the sequence {U (s)} generated by the iterative scheme

U (s+1) = F(U (s)), s = 0, 1, 2, . . .

which is assumed to be well-defined. If the sequence {U (s)} is bounded and has only
finitely many accumulation points, then the following holds:

1. The sequence {U (s)} converges, or
2. For sufficiently large s, the consecutive elements U (s), U (s+1), . . . exhibit cyclic

behavior. Specifically, disjointed neighborhoods exist around the accumulation
points, so the sequence cyclically visits each neighborhood.

Additionally, the second lemma, as stated in [1, Theorem 7.1.1], addresses the
number of solutions to polynomial systems. This result characterizes the behavior of
the critical points of an objective function, where the solutions of a polynomial system
define the first-order optimality conditions.
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Lemma 4.5. Let P (z; q) : Cn × Cm → Cn be a system of polynomials in n vari-
ables and m parameters; that is, F (z; q) = {f1(z; q), . . . , fn(z; q)} and each fi(z; q) is
polynomial in both z and q . Furthermore, let N (q) denote the number of nonsingular
solutions as a function of q:

N (q) := #

{
z ∈ Cn | F (z; q) = 0, det

(
∂F

∂z
(z; q)

)
̸= 0

}
.

Then,

1. N (q) is finite and is the same, denoted as N , for almost all q ∈ Cm;
2. For all q ∈ Cm, it holds that N (q) ≤ N ;

Finally, the third lemma in real analysis provides a valuable property for analyzing
the convergence of the sequence.

Lemma 4.6. [5, Lemma 4.4] Let {u(s)} be a bounded sequence of real numbers such
that |u(s+1)−u(s)| → 0 as s → ∞. If the sequence has only finitely many limit points,
then {u(s)} converges to a single, unique limit point.

We now present the convergence result of the proposed algorithm.

Theorem 6 The sequence generated by Algorithm 1 with any unitary matrix U (0) ∈ Cn×n

has a unique limit point, which is also a critical point of Problem 1 for almost all pairs of
Hermitian positive definite matrices (σ, ρ).

Proof Note that the set Sn is compact and bounded, meaning any sequence U (s) ∈ Sn must
have a convergent subsequence. Since the polar decomposition is unique for full-rank matrices
and continuous concerning its parameters,

According to Lemma 4.3, all accumulation points satisfy the equation

Û (s)P̂ (s+1) = −∇g(Û (s))

for some Hermitian positive definite matrix P̂ s+1. Additionally, by Lemma 4, Û (s) are critical
points of Problem 1 and solutions to the first-order condition of the objective function g
subject to the unitary constraint. This condition is a polynomial equation. From Lemma 4.5,
it follows that the number of critical points is finite for almost all pairs of (σ, ρ).

Therefore, based on Lemma 4.4, we conclude that the sequence {U (s)} either converges
or forms a cyclic orbit. Finally, Lemma 4.6 ensures convergence; otherwise, the distance
∥U (s) − U (s+1)∥2F would not converge to zero. This completes the proof. □

5 Reconstruction Process and Complexity Analysis

First, we introduce the naive quantum state tomography process to a quantum state
ρ ∈ Cn×n. We write ρ =

∑n
i,j=1 ρijeie

T
j , ρij ∈ C, where ei is a standard vector in Cn

taking value 1 at the i-th position. Define two Hermitian matrices, (Eij)+ = (eie
T
j +

13



eje
T
i )/2, and (Eij)− = (eie

T
j − eje

T
i )/2i. The standard quantum state tomography

process utilizes
{
(Eij)+ , (Eij)−

}n

i,j=1
to identify the ρij by computing Tr(ρ (Eij)+)

and Tr(ρ (Eij)−) to obtain the real and imaginary part of ρij , respectively. Thus, a

naive quantum state tomography requires n2+n operators to determine the description
of ρ uniquely.

Next, we analyze the total operations of applying our proposed method to recon-
struct the quantum channel prescribed on unitary matrices. Leveraging the proposed
algorithm alongside Theorem 1 and Theorem 2, we outline the following procedure to
reconstruct the quantum channel Φ(ρ) = UρU∗ from given quantum states ρ.

Step 1

Choose a non-degenerate state ρ0 and order its eigenvectors in a fixed order to form
the matrix V = [v1, v2, · · · vn]. Then, pass this ρ0 to a channel Φ in interest. We must
apply quantum state tomography to Φ(ρ0) to prepare information for the proposed
algorithm. Finally, we obtain a unitary estimate U0 given from our method.

Step 2

From the theoretical result of Theorem 1, there exists a diagonal matrix D whose
diagonal entries have unit modulus, such that U0 = UV DV ∗. Consequently, we obtain

Φ(ρ) = U0

(
V DV ∗)ρ(V D∗V ∗)U∗

0 .

Step 3

Consider two specific quantum states:

(ρp,q,r)+ = vrv
∗
r +

1

2
(vpv

∗
q + vqv

∗
p),

and

(ρp,q,r)− = vrv
∗
r +

1

2i
(vpv

∗
q − vqv

∗
p),

where p ̸= q and p, q ̸= i. Without loss of generality, we consider the case where r = 1.

By expressing Φ
(
(ρp,q,r)+

)
and Φ

(
(ρp,q,r)−

)
in the following form:

U0

(∑n
i=1 diiviv

∗
i

(
v1v

∗
1 + 1

2 (vpv
∗
q + vqv

∗
p)
)∑n

j=1 d
∗
jjvjv

∗
j

)
U∗
0 ,

U0

(∑n
i=1 diiviv

∗
i

(
v1v

∗
1 + 1

2i (vpv
∗
q − vqv

∗
p)
)∑n

j=1 d
∗
jjvjv

∗
j

)
U∗
0 .

We can identify (dppd
∗
qq) by computing u∗

1Φ
(
(ρp,q,1)+

)
u1 and u∗

1Φ
(
(ρp,q,1)−

)
u1.

Therefore, two computational steps are required to obtain dppd
∗
qq.

Step 4

Repeat Step 3 until each product dppd
∗
qq, for all p ̸= q, is determined. The total com-

putational cost required is 2n, including the real part and imaginary part. Finally, by
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fixing d11 = 1 without loss of generality, the remaining diagonal elements d22, . . . , dnn
can be uniquely reconstructed.

In summary, the reconstruction process requires n2 + n+ 2n tomography steps.

6 Numerical Experiments

In this section, we present two examples to demonstrate the effectiveness of our
proposed algorithm and the convergence of the sequence generated by the algorithm.

Example 1 In this example, we will demonstrate the effectiveness of our proposed
algorithm for exploring the unitary quantum channel that sends a given quantum state
ρ to an observation state σ. We generate the original unitary channel U ∈ C10×10

using the SVD algorithm applied to a randomly generated Hermitian positive definite
matrix. The quantum state ρ ∈ C10×10 will also be a randomly generated Hermitian
positive definite matrix. The observation state σ will be calculated as σ = UρU∗. We
then apply our proposed algorithm to approximate the channel and record the value
of the objective function as well as the difference in the iterative U (s).
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Fig. 1

Figure 1a shows the decreasing behavior of the objective function when applying
our proposed algorithm to approximate a unitary quantum channel that transforms the
input state ρ into σ. We terminate the numerical process after 1000 iterations, as the
objective value approaches 10−30, which can be consided zero, although the objective
function decreases. Additionally, figure 1b demonstrates the difference between the
generated U (s+1) and the previous iteration U (s). This difference tends toward zero
as the process nears termination. We also observe fluctuations during the iterations,
but their magnitude is less than 10−20. Hence, we are confident that this example
sufficiently supports our convergence theorem. Besides, we attribute these fluctuations
to software or machine-induced errors.
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Beyond demonstrating the effectiveness of the proposed algorithm in exploring a
possible unitary quantum channel from a pair of quantum states, we also aim to high-
light its capability to identify an appropriate quantum channel from a sequence of
quantum pairs. To this end, we prepare 20 quantum input states {ρi}20i=1 ⊂ C10×10 cor-
responding to observed states {σi}20i=1, where each pair is transformed by an unknown

quantum channel Û .
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Fig. 2

Figure 2a illustrates the decreasing trend of the objective function over iterations.
Additionally, Figure 2b shows that the difference between the generated U (s) matrices
gradually approaches zero. This example demonstrates that our proposed method can
uncover the underlying mechanisms of a quantum process from numerous pairs of
inputs and outputs.

Example 2 Identifying an unknown unitary quantum channel motivates this
approximation framework. In this example, we will show our method’s effectiveness in
exploring the unknown quantum channel from given quantum pairs. To simplify our
discussion, we assume noise-free output states. Assuming a sequence of output states is
generated by the giving compositing quantum logic gate: The H gate in Figure 3 rep-

resents the Hadamard gate, and the symbol
q1

q2
represents the control-not
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Fig. 3: Synthetic quantum logic gate

gate (CNOT gate). The matrix representation of the given circuit is

U =
1

2



1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
0 −1 0 1 0 1 0 −1
−1 0 1 0 1 0 −1 0


.

We prepare a non-degenerated quantum state ρ and collect its output through the
prescribed channel. We first show in Figure 4 that the objective function is decreasing
and eventually converges to 10−20 after 2000 iteration steps. We denote the optimal
solution U ′ of the optimization problem (1). Next, we assume that there is a diagonal
matrix D such that U ′ = U(V DV ∗), where V collects the eigenvectors of ρ in a given
order. We find the elements in D by following Step 3 of the reconstruction procedure
outlined in Section 5. Finally, we reconstruct a unitary matrix U ′, which differs from
the ground truth U , a complex scalar with modulus 1.

To demonstrate the effectiveness of our method, we run the example 20 times with
different nondegenerate ρ. In each run, we record the difference between the normalized
matrix U (scaled by 1/U11) and the normalized matrix U ′ (scaled by 1/U ′

11), namely∥∥∥ 1
U11

U − 1
U ′

11
U ′
∥∥∥
F
. The histogram of all 20 runs is shown in Figure 5. The differences

remain below 10−9, demonstrating that the computed result U ′ from our method
differs from the true result result U only by a scalar with modulus 1.

7 Conclusion

This article focuses on characterizing a quantum channel represented by a single uni-
tary operator using limited data. We begin by showing, through theoretical arguments,
that the set of possible unitary matrices derived from limited data forms an equiva-
lence class, which reduces the overall search space. We further prove that these unitary
matrices, describing the channel action on all quantum states, differ only by a com-
plex scalar of unit modulus. Building on this insight, we recast the exploration as an
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Fig. 5: Histogram of the difference

∥∥∥∥ 1

U11
U − 1

U ′
11

U ′
∥∥∥∥
F

in 20 runs

optimization problem and propose an effective algorithm based on polar decomposi-
tion to solve it. Our method generates a sequence that decreases the objective function
and eventually converges to a local minimum through theoretical proofs and numer-
ical experiments. Consequently, we provide an efficient way to uncover the unknown
unitary quantum channel and effectively leverage limited data.
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