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Abstract. Designing a mixed quantum channel is challenging due to the complexity of the transformations and4
the probabilistic mixtures of more straightforward channels involved. Fully characterizing a quantum channel generally5
requires preparing a complete set of input states, such as a basis for the state space, and measuring the corresponding6
output states. In this work, we begin by investigating a single input-output pair using projected gradient dynamics.7
This approach applies optimization flows constrained to the Stiefel manifold and the probabilistic simplex to identify8
the original quantum channel. The convergence of the flow is guaranteed by its relationship to the Zariski topology.9
We present numerical investigations of models adapted to various scenarios, including those with multiple input-output10
pairs, highlighting the flexibility and efficiency of our proposed method.11
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1. Introduction. Recent advances in quantum simulators and processors have significantly14

improved hardware capabilities and measurement techniques. However, fully characterizing quantum15

dynamics or channels remains a fundamental challenge. To address this, quantum process tomography16

(QPT), also known as channel identification, provides a systematic framework for reconstructing an17

unknown quantum process from experimental data. By determining how quantum systems evolve in18

response to various input and output states, QPT allows us to mathematically describe the process via19

the notation Φ, which maps an input state ρ to an output state σ:20

σ := Φ(ρ).21

In this work, we utilize prior knowledge of input and output states to recover a mixed quantum22

channel, if it exists, by solving the following optimization problem:23

Minimize
1

2
∥σ −

r∑
k=1

pkUkρU
∗
k∥2F ,(1.1a)24

subject to Uk ∈ Sn, k = 1, . . . , r,(1.1b)25

p ∈ ∆r−1,(1.1c)26

where Sn denotes the set of n-by-n unitary matrices, ∆r−1 represents the probability simplex, denoted27

as:28

(1.2) ∆r−1 :=

{
p ∈ Rr | p = [pk] ≥ 0,

r∑
k=1

pk = 1

}
,29

and ∥ · ∥F is the Frobenius norm.30

This formulation, which we refer to as the optimization of mixtures of unitary operations, is a31

fundamental problem in quantum computing and quantum information theory. It has broad applications,32

including quantum channel approximation, quantum state synthesis, and noise modeling [11, 13, 4].33

For example, consider the depolarizing channel:34

(1.3) Φ(ρ) := (1− p)ρ +
p

3
(XρX + Y ρY + ZρZ) ,35

∗ Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan (mhlin@mail.ncku.edu.tw)
†Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, TX 78712.

(bingzelu@utexas.edu).

1

This manuscript is for review purposes only.



where p is the probability of depolarization and X, Y , Z are Pauli matrices. Without knowing p or36

the underlying unitary operations a priori, our method aims to approximate Φ using a convex mixture37

of unitary operations.38

On the other hand, the discrepancy metric utilized in (1.1) is grounded in different operational39

paradigms and mathematical formulations. Rather than using the Frobenius norm, a more common40

measure is fidelity, defined as:41

F (σ, ρ) =

(
Tr
(√√

σρ
√
σ
))2

,42

to assess the similarity between two quantum states σ and ρ. However, directly optimizing fidelity43

can be challenging due to the complexity introduced by the square-root and trace operations. To44

avoid these difficulties, we adopt the Frobenius norm as a computationally efficient alternative in (1.1).45

Unlike fidelity, the Frobenius norm simplifies optimization by avoiding complex matrix operations such46

as nested square roots and matrix traces. Although minimizing the Frobenius norm does not explicitly47

maximize fidelity, empirical results suggest that it often yields high-fidelity approximations, mainly48

when the target state and the approximate state are sufficiently close. This makes it a practical option49

for rebuilding quantum channels while ensuring computational efficiency.50

Specifically, this work employs a gradient flow-based method that actively refines the required51

number of unitary operations. Note that this value r in (1.1) quantifies the complexity of decomposition52

and is essential to characterize the minimal resources required for tasks such as the quantum channel53

approximation and state synthesis. To solve the optimal problem (1.1), one crucial aspect is to determine54

the minimum number r of unitary operations needed for an accurate decomposition. A similar but55

more theoretical discussion of the minimal decomposition of quantum channels is provided by Lancien56

and Winter [10], who examine the approximation of quantum channels through completely positive57

maps with low Kraus rank, providing insights into how these decompositions can be optimized to58

minimize operational complexity. Beginning with a higher rank r, we demonstrate how to dynamically59

utilize the gradient flow method to adjust this parameter during the computation process. This60

approach seeks to make the approximation of a quantum channel computationally feasible using the61

fewest possible unitary operations.62

The remainder of this paper is organized as follows. In Section 2, we present the application of63

the projected gradient flow to solve the optimization problem. In Section 3, we provide a thorough64

analysis of the proposed method, proving that the objective function consistently decreases as expected,65

and establishing key convergence results. In Section 4, we validate our theoretical insight through66

numerical experiments, including a practical application centered on recovering the depolarizing67

quantum channel (1.3). Finally, Section 5 offers concluding remarks.68

2. Gradient flows. Building upon the standard Euclidean algorithm [1, 8, 2], we introduce69

a continuous-time flow to solve (1.1). The main advantage of this algorithm is that the individual70

iterate also stays on the given constraints and simultaneously yields the optimal solution once it71

converges. Given a fixed rank r, the nearest problem given in (1.1) is to find a probability parameter72

p = (p1, . . . , pr) and unitary matrices Uk ∈ Cn×n, k = 1, . . . , r, such that the objective function73

(2.1) f(p, U1, . . . , Uk) :=
1

2
∥σ −

r∑
k=1

pkUkρU
∗
k∥2F74

is minimized. The function f in (2.1) is not analytic unless it is a zero function. Although the function75

f is not holomorphic (i.e., complex differentiable), we can still compute its derivatives concerning the76

real and imaginary parts of each variable. To proceed, let UR and UI denote the real and imaginary77

parts of the complex matrix U , respectively. Using the concept of Wirtinger derivatives, the following78

result provides explicit expressions for the components of the derivatives of f concerning the real79

variables.80
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Theorem 2.1. For k = 1, . . . , t, the components of the derivative of f with respect to the real and81

imaginary parts, UR
k and UI

k , of Uk and pk are given as follows:82

(2.2)



∂f

∂UR
k

= 2Re (pk (Ak − σ)Ukρ) ,

∂f

∂UI
k

= 2Im (pk (Ak − σ)Ukρ) ,

∂f

∂pk
= Re (⟨Ak − σ, UkρU

∗
k ⟩) + pk∥ρ∥2F ,

83

where Ak is defined as:84

Ak :=
∑
j ̸=k

pjUjρU
∗
j .85

Proof. The objective function g can be equivalently expressed as:86

f(p, U1, . . . , Uk) =
1

2

(
⟨σ −Ak,−pkUkρUk

⊤⟩87

+⟨−pkUkρUk
⊤
, σ −Ak⟩+ ∥σ −Ak∥2F + p2k∥ρ∥2F

)
,(2.3)88

where the inner product is defined as:89

⟨X,Y ⟩ :=

n∑
i,j=1

xijyij90

for X,Y ∈ Cn×n. Correspondingly, we let the real-valued inner product over the real field is91

⟨X,Y ⟩R :=

n∑
i,j=1

xijyij .92

From direct computation, the derivatives of g are obtained as93

∂f

∂Uk
·∆U = ⟨pk(Ak − σ)Ukρ,∆U⟩R,94

∂f

∂Uk

·∆U = ⟨pk(Ak − σ)Ukρ,∆U⟩R,95

∂f

∂pk
= Re

(
⟨Ak − σ, UkρUk

⊤⟩
)

+ pk∥ρ∥2F .96

Using the properties of Wirtinger derivatives [3, 9], the partial derivatives of g with respect to UR
k97

and UI
k are derived as98

∂f

∂UR
k

=
∂f

∂Uk
+

∂f

∂Uk

,99

∂f

∂UI
k

= ı

(
∂f

∂Uk
− ∂f

∂Uk

)
,100

which yields the result in (2.2). This completes the proof.101

Theorem 2.1 establishes the fundamental derivative information necessary to construct a descent102

flow for the optimization process. However, the optimization problem posed in (1.1) is a constrained103
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optimization problem in which the descent flow must respect the constraints imposed. Specifically, the104

flow must be limited to the feasible region defined by the constraints. To explore this in greater depth,105

let γ(t) = (p(t), U1(t), . . . , Ur(t) represent a smooth curve within the domain ∆r−1 × Sn1
× · · · × Snr

,106

where t ∈ R, and assume that γ(0) = (p, U1, . . . , Ur) lies in the interior of this domain. This assumption107

ensures that the initial point of the curve follows all necessary constraints, enabling us to determine108

how the descent flow advances within the permissible domain.109

On the other hand, we observe that the derivative of f(γ(t)) is given by:110

df(γ(t))
dt

=
∑r

k=1
∂f
∂pk

dpk

dt +
∑r

k=1 tr

([
∂f

∂UR
k

]⊤
dUR

k

dt

)
+
∑r

k=1 tr

([
∂f
∂UI

k

]⊤
dUI

k

dt

)
,

(2.4)111

where the superscript “⊤” denotes the transpose of the matrix.112

To derive the descent flow from (2.4), we update the tuple (p(t), U (1)(t), . . . , U (r)(t)) along the113

trajectory defined by the Euclidean derivative of (2.2). However, since the optimization problem in114

(1.1) is constrained by the unitary matrix structure and the probability simplex, updates must remain115

within these domains. To address this, we first consider the fundamental problem:116

Minimize g(U),(2.5a)117

subject to U ∈ Sn.(2.5b)118

The gradient of f(U) is expressed as:119

∇g(U) =
∂g(U)

∂UR
k

+ i
∂g(U)

∂UI
k

,120

and the steepest descent direction at U ∈ Sn is determined using the real-valued inner product and121

norm:122

⟨A,B⟩r = Re(tr(A∗B)),(2.6)123

∥A∥r =
√
⟨A,A⟩r,(2.7)124

where A and B are n× n complex matrices and Re(·) denotes the real part of a complex number. Like125

(2.4), we see that the steepest descent direction starting from a point U ∈ Sn is determined by126

(2.8) ξU = argmin
ξ∈TUSn,∥ξ∥U=1

⟨∇g(U), ξ⟩U =
−ProjTUSn

(∇g(U))

∥ProjTUSn
(∇g(U))∥U

,127

where ProjTUSn
(∇f(U)) is the projection of ∇f(U) onto the tangent space TUSn.128

Recall that the tangent space TUSn attached to the point U is characterized as:129

TUSn = {Z ∈ Cn×n : U∗Z + Z∗U = 0}130

= UH⊥
n ,131

where H⊥
n is the space of skew-Hermitian matrices (see [7] for further details). Using this, the steepest132

descent flow on Sn is given by:133

(2.9)
dU(t)

dt
= −U skew(U∗∇g(U)),134

where skew(A) = 1
2 (A−A∗) represents the skew-Hermitian part of the matrix A.135

Similarly, let p(t) = [pi(t)] with p(0) > 0 evolve on the probability simplex ∆r−1. To preserve the136

trace-one property and ensure reducing the objective value in (??), we enforce:137

(2.10)

r∑
i=1

dpi(t)

dt
= 0 for all t ≥ 0.138
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Combining these results, we obtain the modified continuous-time descent system for minimizing f139

given in (1.1):140

(2.11)


dUk

dt
(t) = −Uk skew

(
U∗
k

∂f

∂Uk

)
,

dpk
dt

(t) = − ∂f

∂pk
+

1

r

r∑
ℓ=1

∂f

∂pℓ
,

141

for k = 1, . . . , r.142

By construction, we observe that143

d∥Uk∥2F
dt

= 2 Re

(〈
Uk(t),

dUk(t)

dt

〉)
= 0,144

where the last equality follows from the fact that Re (⟨A,B⟩) = 0 for any Hermitian matrix A and145

skew-Hermitian matrix B. This implies that the trajectory Uk(t) remains bounded in its Frobenius146

norm for all t and k = 1, . . . , r. On the other hand, note that the optimization problem described in147

(1.1) imposes two constraints on the coefficients pk: they must be nonnegative and they must sum to148

one. In contrast, the dynamics described in (2.11) inherently preserves only the property of summing to149

one. However, ensuring non-negativity is a manageable challenge. One can address this issue by using150

standard techniques for solving ordinary differential equations. A well-known and effective approach151

is to utilize the event detection feature available in MATLAB’s built-in “ode” solver. This feature152

allows us to define a custom event function that monitors the system during integration. Specifically,153

we construct the event function to detect the exact moment, denoted t̂, when any coefficient pk̂(t̂),154

for some index k̂, becomes zero. Identifying this critical moment is important because continuing155

the integration beyond this moment would violate the non-negativity constraint. Furthermore, once156

pk̂(t̂) reaches zero, its contribution to the term pk̂(t̂)Uk̂(t̂)ρUk̂(t̂)∗ becomes redundant in evaluating the157

optimal value. At this point, we pause the iteration and restart the process from the current state,158

excluding the coefficient pk̂ and its associated unitary matrix Uk̂ from further iterations. This approach159

ensures the solution’s boundedness and enhances computational efficiency by adaptively reducing the160

problem’s dimensionality. We outline the complete procedure in Algorithm 2.1.161

Algorithm 2.1 Modified Continuous-Time Descent Flow

1: Input: Initial values {pk(0), Uk(0)}
2: Output: Optimized values {pk, Uk}
3: while Optimization has not converged do
4: Use an ODE solver to integrate (2.11) with initial values {pk(0), Uk(0)}.
5: if there exists an index k̂ and time t̂ such that pk̂(t̂) = 0 then
6: Remove the component (pk̂, Uk̂) from further optimization.

7: Restart integration with updated initial values {pk(0), Uk(0)} ← {pk(t̂), Uk(t̂)} for k ̸= k̂.
8: end if
9: end while

3. Convergent Analysis. When solving (1.1) using the continuous-time differential system (2.11),162

it is essential to analyze the convergence of its dynamic behavior. To this end, we first note that163

using the Frobenius norm, the objective function satisfies f(p, U1, . . . , Uk) ≥ 0 for all (p, U1, . . . , Uk).164

From (2.11), let γ(t) = (p(t), U1(t), . . . , Uk(t)). Below, we demonstrate the diminishing behavior of165

the objective function f by using Algorithm 2.1.166

Theorem 3.1. Let γ(t) = (p(t), U1(t), . . . , Uk(t)) represent the flow defined by (2.11). Then, the167

objective value f(γ(t)) in (1.1) does not increase over time along this trajectory γ(t).168
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Proof. Let us explain the result by first analyzing the inner product:169

tr

([
∂f

∂UR
k

]⊤
dUR

k

dt

)
+ tr

([
∂f

∂UI
k

]⊤
dUI

k

dt

)
170

= Re

〈 ∂f

∂Uk
,−Uk

(
U∗
k

∂f
∂Uk
− ∂f

∂Uk

∗
Uk

)
2

〉171

=
1

2

[
−
〈

∂f

∂Uk
,
∂f

∂Uk

〉
+ Re

(〈
U∗
k

∂f

∂Uk
,
∂f

∂Uk

∗
Uk

〉)]
172

≤ 1

2

[
−
〈

∂f

∂Uk
,
∂f

∂Uk

〉
+

∥∥∥∥U∗
k

∂f

∂Uk

∥∥∥∥
F

∥∥∥∥ ∂f

∂Uk

∗
Uk

∥∥∥∥
F

]
= 0.(3.1)173

Here, the inequality follows from the Cauchy-Schwarz inequality, ensuring that the result is non-positive.174

Second, we observe that for the coefficients pk, the corresponding inner product satisfies175

r∑
k=1

〈
∂f

∂pk
,
dpk
dt

〉
=

r∑
k=1

〈
∂f

∂pk
,
∂f

∂pk
+

1

r

r∑
ℓ=1

∂f

∂pℓ

〉
176

= −

(
r∑

ℓ=1

∥∥∥∥ ∂f∂pℓ
∥∥∥∥2
F

− 1

r

r∑
ℓ=1

∂f

∂pℓ

r∑
m=1

∂f

∂pm

)
177

≤ −
(

1− 1

r

) r∑
ℓ=1

∥∥∥∥ ∂f∂pℓ
∥∥∥∥2
F

≤ 0,(3.2)178

where the final inequality follows from the Cauchy–Schwarz inequality. Finally, by computing the179

derivative of f along the trajectory of the solution γ(t), we find that:180

d

dt
f(γ(t)) ≤ 0,181

by applying the results established in (2.4), (3.1), and (3.2) and completes the proof.182

Corollary 3.2. Let γ(t) = (p(t), U1(t), . . . , Uk(t)) represent the flow defined by (2.11), and let183

f(γ(t)) denote the objective value in (1.1). Then df(γ(t))
dt = 0 if and only if dγ(t)

dt = 0.184

Proof. From (2.4), we observe that dγ(t)
dt = 0 implies df(γ(t))

dt = 0.185

Furthermore, from (3.1) and (3.2), we deduce that df(γ(t))
dt = 0 implies186

(3.3)


Re

(〈
∂f

∂Uk
,
dUk

dt

〉)
= 0, for all k = 1, . . . , r,

r∑
k=1

〈
∂f

∂pk
,
dpk
dt

〉
= 0,

187

6
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Additionally, we observe that188

〈
dUk

dt
,
dUk

dt

〉
=

〈
−Uk

(
U∗
k

∂f
∂Uk
− ∂f

∂Uk

∗
Uk

)
2

,−Uk

(
U∗
k

∂f
∂Uk
− ∂f

∂Uk

∗
Uk

)
2

〉
189

=
1

4

〈
U∗
k

∂f

∂Uk
− ∂f

∂Uk

∗
Uk, U

∗
k

∂f

∂Uk
− ∂f

∂Uk

∗
Uk

〉
190

=
1

2

(∥∥∥∥ ∂f

∂Uk

∥∥∥∥2
F

− Re

(〈
∂f

∂Uk
, Uk

∂f

∂Uk

∗
Uk

〉))
191

= −Re

(〈
∂f

∂Uk
,
dUk

dt

〉)
= 0,(3.4)192

if df(γ(t))
dt = 0. Finally, from (3.2), we also have193

r∑
k=1

〈
∂f

∂pk
,
dpk
dt

〉
= 0,194

indicating that
∥∥∥ ∂f
∂pℓ

∥∥∥
F

= 0, i.e., ∂f
∂pℓ

= 0 for k = 1, . . . , r, which completes the proof.195

Lemma 3.3. Let ϕ : Rn → R be a function satisfying ϕ(x) ≥ 0. Furthermore, suppose that its196

derivative along any trajectory x(t) governed by197

(3.5)
dx(t)

dt
= h(x(t))198

satisfies d
dtϕ(x(t)) ≤ 0. Furthermore, suppose that at some particular time t̂, the condition199

dϕ(x(t))

dt

∣∣∣∣
t̂

= 0200

holds if and only if201

dx(t)

dt

∣∣∣∣
t̂

= 0,202

or equivalently, h(x(t̂)) = 0, and assume that for all t ≥ 0, the trajectory x(t) ⊂ Rn is compact and the203

equilibrium points of the dynamical system (3.5) are isolated. Then, for any initial condition x0, the204

solution x(t) converges to one of these equilibrium points, denoted by205

hatx, i.e.,206

(3.6) lim
t→∞

x(t) = x̂.207

Equivalently, the ω-limit set of x(t) consists solely of the point x∗.208

Proof. First, we show that the ω-limit set is contained in
{
x : d

dtϕ(x(t)) = 0
}

. By the definition209

of the ω-limit point, there exists a strictly increasing sequence tk →∞ and a particular point x̂ ∈ Rn210

for which211

x(tk)→ x̂ as k →∞.212

By assumption, ϕ(x(t)) is a continuous and non-increasing function along the trajectory x(t), which is213

defined on a compact set. Consequently, for any strictly increasing sequence sk →∞, the sequence214

7
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{ϕ(x(sk))} is non-increasing. Since {ϕ(x(sk))} is non-increasing and bounded (due to the compactness215

of the set and continuity of {ϕ(x(t))}), it converges to a limit, denoted by216

lim
k→∞

ϕ(x(sk)) = ϕ∗.217

Because x(tk)→ x∞ and ϕ is continuous, we have218

lim
k→∞

ϕ
(
x(tk)

)
= ϕ(x̂).219

Without loss of generality, we assume that for all k ≥ 1, tk ≤ sk. Since {ϕ(x(t))} is a non-increasing220

sequence for all t ≥ 0, it follows that ϕ(tk) ≥ ϕ(sk) for all k ≥ 1. Consequently, we have ϕ(x̂) ≥ ϕ∗.221

Similarly, we can select specific subsequences {tkj} and {skj} such that tkj ≥ skj and show that222

ϕ∗ ≥ ϕ(x̂). Together, these results imply ϕ(x̂) = ϕ∗. Thus, for any strictly increasing sequence {rk}223

with rk → ∞ as k → ∞, we have ϕ(x(rk)) → ϕ∗ as k → ∞. Therefore, ϕ(x(t)) → ϕ∗ as t → ∞.224

Hence, ϕ∗ must be a local minimum of x(t).225

On another note, we have226

d

dt
ϕ(x(t)) = ⟨∇ϕ(x(t)), h(x(t))⟩ ≤ 0 for all t ≥ 0.227

Furthermore,228

lim
k→∞

⟨∇ϕ(x(tk)), h(x(tk))⟩ = ⟨∇ϕ(x̂), h(x̂)⟩ = 0,229

since ϕ(x̂) = ϕ∗ is a local minimum. This implies that h(x̂) = 0, i.e., x̂ is an equilibrium of the230

dynamical system given by (3.5).231

We will then demonstrate that x(t) converges to x̂ as t→∞. Since the flow x(t) is continuous232

and bounded for all t ≥ 0, suppose that x(t) has two distinct ω-limit points, x̂1 and x̂2, with x̂1 < x̂2.233

Then, there exist two sequences {pn} and {qn} such that x(pn)→ x̂1 and x(qn)→ x̂2 as n→∞. Let234

y be a point in (x̂1, x̂2). Then y must be an ω-limit point. Otherwise, there exist two positive numbers235

ϵ and tℓ such that |x(t)− y| > ϵ for all t ≥ tℓ. This contradicts the fact that the flow between (x̂1, x̂2)236

must be continuous. Therefore, this implies that every point in [x̂1, x̂2] is an ω-limit point and an237

equilibrium point, which contradicts our assumption that the equilibrium points are isolated. This238

completes the proof.239

Furthermore, our convergence analysis counts on the following result for geometrically isolated240

solutions of a generic polynomial system [12, Theorem 7.1.1].241

Lemma 3.4. Let P (z;q) be a system of polynomials with variables z ∈ Cn and parameters q ∈ Cm.242

Define N (q) as the number of geometrically isolated solutions satisfying the condition:243

N (q) := #

{
z ∈ Cn

∣∣∣∣P (z;q) = 0,det

(
∂P

∂z
(z;q)

)
̸= 0

}
.244

The following properties hold:245

1. N (q) is finite and remains constant, denoted as N , for almost all q ∈ Cm;246

2. For all q ∈ Cm, it follows that N (q) ≤ N ;247

3. The subset of Cm where N (q) = N is a Zariski open set. In other words, the exceptional248

subset of q ∈ Cm where N (q) < N is an affine algebraic set contained within an algebraic set249

of dimension n− 1.250

Note that the set Rn is Zariski dense in Cn [6]. Thus, the properties described above hold for almost251

all parameters q ∈ Rm, although the number of isolated solutions of real value of the function varies252

and is no longer constant. Despite this imperfection, this result is sufficient for our purposes, as it253

establishes the necessary conditions for the subsequent discussion.254

8

This manuscript is for review purposes only.



By utilizing Lemma 3.4 and Lemma 3.3, along with the established condition of the boundedness255

for this dynamical flow (2.11), we can demonstrate the following convergence property.256

Theorem 3.5. Let γ(t) = (p(t), U1(t), . . . , Uk(t)) represent the flow defined in equation (2.11).257

Let γ∗ be an ω-limit point of the flow γ(t). Then, we have258

(3.7) lim
t→∞

γ(t) = γ∗
259

almost surely for any initial value γ(0).260

4. Numerical Experiments. In this section, we present three experiments demonstrating a261

decreasing trend of the objective function along the defined trajectory while addressing stability262

concerns. We have implemented our proposed method in MATLAB (version 2024b). For numerical263

integration, we utilized the ode15s function with an absolute tolerance (Abstol) and a relative tolerance264

(Retol) set to 10−12, which allows the integrator to select the time step size adaptively. The program265

terminates once the objective function reaches 10−17, and we report the corresponding silhouettes.266

Despite the non-uniqueness of the approximated quantum channel, we demonstrate how our method267

can effectively approximate the original channel.268

It is known that a mixed unitary quantum channel can have multiple ways of being decomposed.269

If a quantum channel admits the decomposition270

Φ(X) =

r∑
k=1

pkUkXU∗
k ,271

its corresponding Choi representation is given by272

C(Φ) =

r∑
k=1

vec(
√
pkUk)vec(

√
pkUk)∗.273

These two representations are equivalent [5, 13]. Thus, in our subsequent discussion, we use the Choi274

representation to determine whether different decompositions correspond to the same quantum channel.275

Example 1 This example illustrates the effectiveness of our proposed method through two276

experiments. The first experiment tackles the following optimization problem (1.1) The second277

experiment solves a similar problem but over multiple pairs of input and output quantum states:278

Minimize
1

2

m∑
j=1

∥∥∥σj −
r∑

k=1

pk Uk ρj U
∗
k

∥∥∥2
F
,(4.1a)279

subject to Uk ∈ Sn, k = 1, . . . , r,(4.1b)280

p ∈ ∆r−1,(4.1c)281

Assume that we have a mixed unitary quantum channel Φ over C5×5 that is unknown to our282

program. We define Φ by randomly generating five unitary matrices Uk and a set of probabilities pk283

(which sum up to 1), so that284

Φ(X) =

5∑
k=1

pk Uk X U∗
k .285

Next, we create the one-shot data. Let ρ ∈ C5×5 be a randomly generated positive-definite286

Hermitian matrix, which we regard as the input quantum data. We then set σ = Φ(ρ) to be the287

corresponding output quantum data. Without knowing the initial number r = 5, our numerical288
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procedure sets the initial data with R = 10, which is twice the exact low rank, and randomly generates289

the initial data290

{pk(0), Uk(0)}Rk=0291

corresponding to the prescribed structure in (1.1).292

By employing Algorithm 2.1, we generate the flow293

pk(t), Uk(t)
R
k=0.294

Figure 1a verifies that the constructed flow monotonically decreases the objective function, as rigorously295

established in Theorem 3.1. The red circles in Figures 1a and 1b mark critical moments when any pk(t)296

approaches zero, prompting a program restart to ensure the solution remains feasible. Importantly,297

Figure 1b demonstrates that the sum of pk(t) consistently equals 1 throughout all iterations, despite the298

observed minor fluctuations. These fluctuations arise due to numerical integration and rounding errors;299

however, their magnitudes remain relatively small and close to zero, ensuring the overall reliability of300

the approach.301
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(a) The evolution of the objective values of (1.1)
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(b) The evolution of
∑

k=1 pk(t)

Fig. 1: Numerical results of solving (1.1)

The presence of five red circles in Figures 1a and 1b indicates five restarts, which leads to a302

progressive reduction of the low-rank approximation to 5. Since σ is made up of precisely five quantum303

channels, the reduction of R from 10 to 5 highlights the effectiveness of our method in identifying and304

eliminating redundant channels. Additionally, the objective function shows a substantial decrease,305

ultimately reaching 10−20 as t nears 105, highlighting the robustness and accuracy of our algorithm in306

optimizing the problem at hand.307

Next, we investigate how multiple datasets can aid in recovering the initial channel Φ. It is308

important to note that the optimization problem in (1.1) may admit multiple solutions due to the309

degrees of freedom in Uk exceeding the amount of information the data provides. Based on the310

contributions of Choi and Jamio lkowski, different quantum channels can correspond to distinct Choi311

matrix representations. To assess the robustness of our method, we run the optimization 20 times with312

different initial guesses, then compute the difference between each resulting optimal channel Φ̂ and313

the original channel Φ using their corresponding Choi matrices; specifically, we evaluate the deviation314

through the Frobenius norm ∥C(Φ)−C(Φ̂)∥F . The results are shown in 2, where the x-axis represents315

the difference between the computed optimal channel and the original quantum channel. Although316

our experiments still reveal that each run successfully reduces the objective function to 10−20, the317

resulting quantum channel still exhibits deviations from the true channel.318
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Fig. 2: Values of ∥C(Φ)− C(Φ̂)∥F collecting from 20 runs

To address this issue, we aim to evaluate the impact of providing additional data pairs to enhance319

the likelihood of accurately approximating the original quantum channel. This is done by solving the320

optimization problem in (4.1). Establishing the dynamical system for (4.1) is similar to that given321

in (2.11), except that we sum over all data pairs; therefore, we omit the entire process for brevity.322

Specifically, we use the same setup but with m = 20 pairs of input and output quantum states. Our323

primary objective is to verify that the proposed method continues to decrease the objective function324

while maintaining the sum-to-one property among the pk. These features are demonstrated in Figure 3a325

for the descent behavior and in Figure 3b for the sum-to-one property, both of which confirm the326

applicability of our method to the multi-shot problem in (4.1).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-20

10
-15

10
-10

10
-5

10
0

(a) The evolution of the objective values of (4.1)
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(b) The evolution of
∑
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Fig. 3: Numerical results of solving (4.1), where the five circles label the restart occurrence.

327
Next, we evaluate whether additional data enhances the program’s capacity to reconstruct the328

original quantum channel. We use 100 data points, i.e., {σj , ρj}100j=1, in each experiment, as expressed329

in (4.1). This procedure is repeated 20 times. The distribution of the differences ∥C(Φ) − C(Φ̂)∥F330

across the 20 runs is shown in Figure 4. In contrast to Figure 2, where the x-axis covers a wider331
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Fig. 4: Distribution of ∥C(Φ)− C(Φ̂)∥F collected from 20 runs.

range, the x-axis in Figure 4 is centered around 3.5× 10−8.The findings indicate that the reconstructed332

channels, derived from multiple data pairs, closely resemble the original channel in terms of their333

Choi matrix representations. Therefore, we conclude that our method can effectively reconstruct an334

unknown mixed unitary quantum channel when enough data pairs are available.335

Example 2 The second example examines the depolarizing channel defined in (1.3), where the336

parameter p controls the strength of the noise. This channel is crucial for simulating errors in quantum337

information processing, while in quantum error correction, it aids in the design of codes that aim to338

mitigate the effects of quantum noise.The second example examines the depolarizing channel defined339

in (1.3), where the parameter p controls the strength of the noise. This channel is essential for simulating340

errors in quantum information processing and plays a significant role in quantum error correction,341

helping to design codes that can mitigate the impacts of quantum noise. We set p = 0.9 to characterize342

the channel and evaluate our proposed method by comparing the Choi matrix representation of the343

learned channel with that of the actual channel. We provide 20 input data points and measure the344

corresponding outputs using the depolarizing channel to achieve this goal. The experiment is repeated345

20 times, as done in previous studies. We then plot the difference distribution between the Choi matrix346

representations of the actual and approximated channels.347

As shown in Figure 5, the difference in the Choi matrix representations between the approximated348

and actual depolarizing channels is concentrated around 3.2× 10−9 across the 20 runs. These results349

demonstrate that our method effectively identifies a quantum channel that closely approximates the350

unknown channel, resulting in minimal error in the Choi matrix representation.351

5. Conclusion. This article proposes a descent flow approach to approximate an unknown unitary352

quantum channel. We formulate the problem as an optimization task on complex Stiefel manifolds353

and construct the flow using Wirtinger derivatives. Theoretically, we prove that the flow reduces354

the objective function while preserving the positivity and sum-to-one properties of the probability355

distribution pk, which characterizes the approximated channel. Moreover, we show that the ω-limit356

points obtained through our method are isolated and correspond to critical points of the objective357

function. These findings ensure the applicability of our approach in achieving an optimal solution. We358

validate the effectiveness and stability of our method numerically through experiments. Our approach359

is extended from single-shot to multi-shot data, and we evaluate the computed accuracy based on the360

Choi matrix representation of the quantum channel. The numerical results indicate that the proposed361

method can effectively approximate the unknown quantum channel by using multiple datasets.362
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Fig. 5: Distribution of all ∥C(Φ)− C(Φ̂)∥F collected from 20 runs.
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