

Non-linear Elliptic
Equations onCanonical Metrics
On ManifoldsUnderstand
On ManifoldsMarkowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Markowski
Mar

Venue

Room 440+Online Meeting, Astronomy-Mathematics Building, NTU

Speakers Chao-Ming Lin Ming-Yuan Chang

Ohio State University Institute of Mathematics, Academia Sinica

Organizer Mao-Pei Tsui National Taiwan University

Background & Purposes

This lecture series explores nonlinear PDE on Riemannian manifolds: non-linear elliptic equations on Kähler manifolds, an L^{^2}-estimate for the Dirac-Dolbeault operator for line bundles with mixed curvature and the elliptic theory of G²-structures.

The first part focuses on the work of G. Székelyhidi concerning a priori estimates for fully non-linear elliptic equations on compact Kähler manifolds. These estimates play a crucial role in understanding the regularity of solutions to such equations.

The second part explores the ellipticity of the G^{-2} holonomy equation on manifolds with boundaries, developed by S.K. Donaldson. This approach leads to a deformation theory and the existence of certain geometric objects called G^{-2} cobordisms.

Outline & Descriptions

The series comprises four lectures: **Professor Chao-Ming Lin** 05/14, 05/21 11:00-12:30 will give two talks and **Ming-Yuan Chang** 05/14, 05/21 13:30-14:30 will deliver two talks. There is lunch break from 12:30-13:30.

This lecture series is targeted towards students or mathematicians with a background in differential geometry and analysis on manifolds. Familiarity with basic concepts of Kähler manifolds and elliptic equations would be beneficial.

Registration

Information