Lecture Room B, 4th Floor, The 3rd General Building, NTHU
(清華大學綜合三館 4樓B演講室)
The Mordell-Weil Theorem for T-modules
Yen-Liang Kuan (NCTS)
Abstract:
In 1995, Poonen proved an analogue for Drinfeld modules of the Mordell-Weil theorem. In this talk, we shall generalize his results to the case of

-modules. Specifically, let
%24&chf=bg,s,333333&chco=ffffff)
be a

-module defined over a finite extension

of the fraction field of

. Assume that there is an integer

such that
with

and the matrix

is invertible. Then the

-module
%24&chf=bg,s,333333&chco=ffffff)
is the direct sum of its torsion submodule, which is finite, with a free

-module of rank

. Moreover, we also show that the

-th tensor power of the Carlitz module
%24&chf=bg,s,333333&chco=ffffff)
is a direct sum of of a free

-module of rank

and a finite torsion module.