The main numerical invariants of a complex algebraic surface —are the self-intersection of its canonical class
![](https://chart.googleapis.com/chart?cht=tx&chl=%20%24%20%5Ccheck%7BS%7D_%7B-2%7D%20%24&chf=bg,s,333333&chco=ffffff)
and its holomorphic Euler characteristic
![](https://chart.googleapis.com/chart?cht=tx&chl=%20%24%5Cchi%5C%20(%5Ccheck%7Bz%7D_%7B-%7D)%20%24&chf=bg,s,333333&chco=ffffff)
. If we assume—to be minimal and of general type then
![](https://chart.googleapis.com/chart?cht=tx&chl=%20%24%20%5Ccheck%7BS%7D%7B%5Cfootnotesize%20-2%7D%20%5Cgeq%202%5Cchi%5C%20(%5Ccheck%7Bz%7D_%7B-%7D)-6%20%24&chf=bg,s,333333&chco=ffffff)
by Noether’s inequality. Minimal algebraic surfaces of general type — such that
![](https://chart.googleapis.com/chart?cht=tx&chl=%20%24%20%5Ccheck%7BS%7D_%7B-2%7D%3D2%5Cchi%5C%20(%5Ccheck%7Bz%7D_%7B-%7D)-6%20%24&chf=bg,s,333333&chco=ffffff)
or
![](https://chart.googleapis.com/chart?cht=tx&chl=%24%20%5Ccheck%7BS%7D_%7B-2%7D%3D2%5Cchi%5C%20(%5Ccheck%7Bz%7D_%7B-%7D)-5%20%24%20&chf=bg,s,333333&chco=ffffff)
are called Horikawa surfaces and most of them admit a canonical
![](https://chart.googleapis.com/chart?cht=tx&chl=%24Z%20_%7B2%7D%20%24&chf=bg,s,333333&chco=ffffff)
-action. In this talk we will discuss other possible group actions on Horikawa surfaces. In particular,
![](https://chart.googleapis.com/chart?cht=tx&chl=%24Z%20_%7B2%7D%20%24&chf=bg,s,333333&chco=ffffff)
-actions and
![](https://chart.googleapis.com/chart?cht=tx&chl=%24Z%20_%7B3%7D%20%24&chf=bg,s,333333&chco=ffffff)
-actions will be studied. One of the by-products of studying group actions on Horikawa surfaces is a better understanding of their group of automorphisms.
In addition, consequences on the moduli spaces of stable Horikawa surfaces
![](https://chart.googleapis.com/chart?cht=tx&chl=%24M%20_%7B%5Ccheck%7BS%7D%20_%7B2%2C%5Cchi%5C%20%7D%20%7D%20%24&chf=bg,s,333333&chco=ffffff)
will follow from the results presented.