Sponsored by
 
Events
News
 
[ Events ]
Seminars and Talks Conferences, Workshops and Special Events Courses and Lecture Series Taiwan Math. School
 

Activity Search
Sort out
Field
 
Year
Seminars  
 
Korea-Taiwan-Vietnam Joint Seminar in Combinatorics and Analysis
 
15:00 - , October 14, 2022 (Friday)
Zoom, Online seminar
(線上演講 Zoom)
A Solution to Ringel’s Circle Problem (1959)
Shakhar Smorodinsky (Ben-Gurion University)

Abstract

In 1959 Gerhard Ringel posed the following problem which remained open for over 60 years. Suppose we are given a finite family C of circles in the plane no three of which are pairwise tangent at the same point. Is it possible to always color the circles with five colors so that tangent circles get distinct colors? When the circles are not allowed to overlap (i.e., the discs bounded by the circles are pairwise interiorly disjoint) then the number of colors that always suffice is four and this fact is equivalent to the Four-Color-Theorem for planar graphs. We construct families of circles in the plane such that their tangency graphs have arbitrarily large girth and chromatic number. Moreover, no two circles are internally tangent and no two circles are concentric. This provides a strong negative answer to Ringel’s 1959 open problem. The proof relies on a (multidimensional) version of Gallais theorem with polynomial constraints, which we derive using tools from Ramsey-Theory.
 
Joint work with James Davis, Chaya Keller, Linda Kleist and Bartosz Walczak

Link Information: https://gapowork.vn/meet/CnC-AvSYDMk1-HaUNZ



 

back to list  
(C) 2021 National Center for Theoretical Sciences