Sponsored by
 
Events
News
 
[ Events ]
Seminars and Talks Conferences, Workshops and Special Events Courses and Lecture Series Taiwan Math. School
 

Activity Search
Sort out
Field
 
Year
Seminars  
 
NCTS Webinar on Nonlinear Evolutionary Dynamics
 
14:30 - 16:00, September 13, 2023 (Wednesday)
Cisco Webex, Online seminar
(線上演講 Cisco Webex)
On the Dynamics of Some Mackey-Glass Type Equations
Tibor Krisztin (University of Szeged)

Abstract

Delay differential equations of the form

y'(t)=-ax(t)+bh(y(t-1))

with positive real parameters and a nonlinear function arise in modelsfor the dynamics of single species populations. 
 
For monotone nonlinearities the dynamics is relatively simple: There is a Morse decomposition of the global attractor, on each Morse component the dynamics is planar, and a fine structure of the global attractor can be described. 
 
A nonmonotone, in particular a hump-shaped, or unimodal nonlinearity $h$ can cause entirely different dynamics. An example  is the hump-shaped  ,  where  are positive parameters. 
 
The case was proposed in 1977 by  Mackey and  Glass as a model for the feedback control of blood cells. Since then this particular equation attracted the attention of many mathematicians interested in nonlinear dynamics and delay differential equations. 
 
The case was introduced by Morozov, Banerjee and Petrovskii in 2016 as a minimal model to account for some of the most common features of population ecology whilst it 
remains capable of simulating sufficiently complex dynamics including long-living transients and chaos. Despite the large number of results showing convergence, oscillations, bifurcations, and complicated solution behavior, the dynamics is not understood yet. Most of the results are numerical.  
 
We prove that for each there are parameter values such that, for sufficiently large ,   orbitally asymptotically stable periodic orbits exist. The periodic orbits can be complicated in the sense that the projections can produce complicated looking figures.  
 
In the case an additional equilibrium point arises, comparing to the case , from  which there exist connecting orbits to zero and to the stable periodic orbit obtained in the first step. Heteroclinc connections are shown between periodic orbits.  Moreover, we rigorously prove the existence of homoclinic orbits to
 

WebEx Link: https://ntucc.webex.com/ntucc-en/j.php?MTID=m771f170721d43eb71ea278befa264331

Meeting number (access code): 2515 027 2890
Meeting password: N2paK6P2tec

 

 


 

back to list  
(C) 2021 National Center for Theoretical Sciences