Room 515, Cosmology Bldg., National Taiwan University + Cisco Webex,
Organizers:
Yng-Ing Lee (National Taiwan University& NCTS)
Gateway to the World-Student Presentations after Academic Visits Abroad
2023 海外暑期學校參與學員心得與課程內容分享 (I)
時間: 共舉辦三場次
地點: 台灣大學次震宇宙館 R515
WebEx 線上參與:
2023.09.11 Link: https://ntucc.webex.com/ntucc-en/j.php?MTID=m4a137a0721390047fee5b5a27da887fa
2023.09.18 Link: https://ntucc.webex.com/ntucc-en/j.php?MTID=mf149603b3ce4d9e72f4a18b3417d1dc7
主講人:
2023.09.11 廖沛妍 (PCMI 2023 Undergraduate Summer School 參加學員); 廖松毅 (2023 SLMath Summer Graduate School 參加學員)
2023.09.18 張恒宇 (2023 SLMath Summer Graduate School 參加學員); 盧德倫 (2023 SLMath Summer Graduate School 參加學員)
2023.09.25 郭婷婷 (2023 SLMath Summer Graduate School 參加學員); 張茗遠 (2023 SLMath Summer Graduate School 參加學員)
報告主題,時程安排
(點選課程名稱連結,您可以找到更多該課程的詳細內容,包括課程介紹、上課影片和講義等)
2023.09.11 Presentations 課程主題
2023.09.18 Presentations 課程主題
2023.09.25 Presentations 課程主題
日期
|
2023.09.11
|
2023.09.18
|
2023.09.25
|
時間
|
09:00-13:00
|
09:30-13:00
|
09:30-13:00
|
地點
|
台大次震宇宙館R515
|
台灣大學次震宇宙館R515
|
台灣大學次震宇宙館R515
|
主講人
|
廖沛妍, 廖松毅
|
張恒宇, 盧德倫
|
郭婷婷, 張茗遠
|
主持人
|
沈俊嚴 教授
|
李志煌, 林偉傑 教授
|
李瑩英主任
|
時程 |
08:30-09:00 報到
09:00-10:40 廖沛妍
10:40-11:00 休息
11:00-12:40 廖松毅
12:40-13:00 Q&A
|
09:00-09:30 報到
09:30-10:15 張恒宇,盧德倫 (心得經驗分享)
10:15-10:25 休息
10:25-11:10 盧德倫 (課程分享報告)
11:10-11:20 休息
11:20-12:05 張恒宇 (課程分享報告)
12:05-13:00 Q&A
|
09:00-09:30 報到
09:30-10:00 郭婷婷, 張茗遠 (心得經驗分享)
10:00-10:10 休息
10:10-11:10 郭婷婷 (課程分享報告)
11:10-11:20 休息
11:20-12:20 張茗遠 (課程分享報告)
12:20-13:00 Q&A
|
報名
報名請按我
#活動為現場參加者備有餐盒, 請預先報名
報名截止日:
2023.09.07 23:59 (2023.09.11 活動分享)
2023.09.14 23:59 (2023.09.18 活動分享)
2023.09.21 23:59 (2023.09.25 活動分享)
Title & Abstract
Speaker: 郭婷婷
Title: A Locally Area-minimizing Torus in a Three-manifold (M,g) with Nonnegative Rg
Abstract: The following theorem is originally due to Cai and Galloway. If (M, g) is a three-dimensional manifold with nonnegative scalar curvature, and Σ is a locally area-minimizing torus in M, then M is flat in a neighborhood of Σ. Here, 'locally area-minimizing' means that Σ has an area less than or equal to that of all nearby surfaces.
Speaker: 張茗遠
Title: Some Basic Techniques in Mean Curvature Flow
Abstract: In this talk, I will first sketch the proof of the short time existence of MCF starting from a compact hypersurface.
After deriving the evolution equations for some fundamental geometric quantities, using Hamilton's trick and maximum principle, we can deduce the comparison principle and the blow up of the second fundamental form.
If time permits, I will mention Huisken’s monotonicity formula and type I singularity, then show its application to MCF for convex closed hypersurfaces.
Contact: Lucy Chang (shunwen.chang@ncts.tw) TEL: 02-3366-8811